Z5–I–6 MO 2017
Na stole ležalo osem kartičiek s číslami 2,3,5,7,11,13,17,19. Fero si vybral tri kartičky. Sčítal na nich napísané čísla a zistil, že ich súčet je o 1 väčší ako súčet čísel na zvyšných kartičkách. Ktoré kartičky mohli zostať na stole? Určte všetky možnosti.
Správna odpoveď:
Zobrazujem 2 komentáre:
Dr Math
o inych netusim sucet 7 + 13 + 19 je 39 = 1 + ( 2 + 3 + 5 + 11 + 17)
uloha ma asi jedno riesenie, kedze su to prvocissla
uloha ma asi jedno riesenie, kedze su to prvocissla
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Téma:
Úroveň náročnosti úlohy:
Súvisiace a podobné príklady:
- Z7-I-4 MO 2017
Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľn - Palko
Palko má 5 kartičiek s číslicami 0, 1, 6, 7, 9. Kolko nepárnych trojciferných čísel z nich môže utvoriť? - Richardove čísla Z8-I-2 2019
Richard sa pohrával s dvoma päťcifernými číslami. Každé pozostávalo z navzájom rôznych cifier, ktoré pri jednom boli všetky nepárne a pri druhom všetky párne. Po chvíli zistil, že súčet týchto dvoch čísel začína dvojčíslím 11 a končí číslom 1 a že ich roz - MO Z8 – I – 4 2018
Na štyroch kartičkách boli štyri rôzne cifry, z ktorých jedna bola nula. Vojto z kartičiek zložil čo najväčšie štvorciferné číslo, Martin potom čo najmenšie štvorciferné číslo. Adam zapísal na tabuľu rozdiel Vojtovho a Martinovho čísla. Potom Vojto z kart
- Hokejové kartičky
Maroš dostal za odmenu po vysvedčení hokejové kartičky. Počet kartičiek, ktoré dostal, je dvakrát väčší ako súčet známok na vysvedčení. Maroš má 8 predmetov a jeho priemerná známka na vysvedčení bola 1,75. Koľko hokejových kartičiek Maroš dostal? - Kartičky
Z piatich kartičiek na ktorých sú čísla 1, 2, 3, 4, 5 poskladajte všetky trojciferne nepárne čísla. Koľko ich je? - Z7–I–1 MO 2018
Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné