Rovnoramenný lichobežník
Je daný rovnoramenný lichobežník ABCD, v ktorom platí:
|AB| = 2 |BC| = 2 |CD| = 2 |DA|:
Na jeho strane BC je bod K taký, že |BK| = 2 |KC|, na jeho strane CD je bod L taký, že |CL| = 2 |LD|, a na jeho strane DA je bod M taký, že |DM| = 2 |MA|. Určte veľkosti vnútorných uhla trojuholníka KLM.
|AB| = 2 |BC| = 2 |CD| = 2 |DA|:
Na jeho strane BC je bod K taký, že |BK| = 2 |KC|, na jeho strane CD je bod L taký, že |CL| = 2 |LD|, a na jeho strane DA je bod M taký, že |DM| = 2 |MA|. Určte veľkosti vnútorných uhla trojuholníka KLM.
Správna odpoveď:
Zobrazujem 4 komentáre:
Peter2
dlžky strán nepoznáme, ale poznáme len ich pomer. Preto vieme vypočítať uhly a o tie v tomto prípade ide.
9 rokov 1 Like
Mo - Radce
Nápoveda. Zamerajte sa najprv na vnútorné uhly lichobežníka ABCD.
Riešenie. Z predpokladov vyplýva, že spojnica stredu úsečky AB s vrcholmi C a D rozdeľuje lichobežník ABCD na tri zhodné rovnostranné trojuholníky. Preto veľkosti vnútorných uhlov v lichobežníka pri vrcholoch A a B sú rovné 60° a pri vrcholoch C a D sú 120°. Zo zadania ďalej vyplýva, že trojuholníky LCK a MDL sú zhodné (podľa vety sus). Preto tiež úsečky KL a LM a vyznačené dvojice uhlov sú zhodné; veľkosti týchto uhlov označíme α a β. Trojuholník KLM je rovnoramenný a uhly pri základni sú taktiež zhodné; ich veľkosť označíme δ a veľkosť uhla KLM označíme γ.
Zo súčtu vnútorných uhlov v trojuholníku KCL odvodíme
α + β = 180 ° - 120 ° = 60 °
Súčet troch vyznačených uhlov s vrcholom L je priamy uhol, teda
γ = 180 ° - (α + β) = 120 °
Napokon, zo súčtu vnútorných uhlov v trojuholníku KLM odvodíme
δ = (180 ° - 120 °) / 2 = 30 °
Veľkosti vnútorných uhlov trojuholníka KLM sú 30 ° a 120 °
Riešenie. Z predpokladov vyplýva, že spojnica stredu úsečky AB s vrcholmi C a D rozdeľuje lichobežník ABCD na tri zhodné rovnostranné trojuholníky. Preto veľkosti vnútorných uhlov v lichobežníka pri vrcholoch A a B sú rovné 60° a pri vrcholoch C a D sú 120°. Zo zadania ďalej vyplýva, že trojuholníky LCK a MDL sú zhodné (podľa vety sus). Preto tiež úsečky KL a LM a vyznačené dvojice uhlov sú zhodné; veľkosti týchto uhlov označíme α a β. Trojuholník KLM je rovnoramenný a uhly pri základni sú taktiež zhodné; ich veľkosť označíme δ a veľkosť uhla KLM označíme γ.
Zo súčtu vnútorných uhlov v trojuholníku KCL odvodíme
α + β = 180 ° - 120 ° = 60 °
Súčet troch vyznačených uhlov s vrcholom L je priamy uhol, teda
γ = 180 ° - (α + β) = 120 °
Napokon, zo súčtu vnútorných uhlov v trojuholníku KLM odvodíme
δ = (180 ° - 120 °) / 2 = 30 °
Veľkosti vnútorných uhlov trojuholníka KLM sú 30 ° a 120 °
Tipy na súvisiace online kalkulačky
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Jednotky fyzikálnych veličín:
Téma:
Úroveň náročnosti úlohy:
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1
Súvisiace a podobné príklady:
- Rovnoramenný lichobežník 2
Daný je rovnoramenný lichobežník ABCD, v ktorom platí |AB|= 2|BC|= 2|CD|= 2|DA|. Na jeho strane BC je bod K taký, že |BK| = 2|KC|, na jeho strane CD je bod L taký, že |CL|= 2|LD|, a na jeho strane DA je bod M taký, že|DM|= 2|MA|. Určte veľkosti vnútorných - Štyri strany lichobežníka
V lichobežníka ABCD je | AB | = 73,6 mm; | BC | = 57 mm; | CD | = 60 mm; | AD | = 58,6 mm. Vypočítajte veľkosti jeho vnútorných uhlov. - Pre štvorciferné
Pre štvorciferné číslo abcd platí, že ab : bc = 1 : 3 a bc : cd = 2 : 1 (ab, bc a cd sú dvojciferné čísla z cifier a, b, c, d). Určte toto číslo. - Také tretinky
Je daný lichobežníku ABCD s rovnobežnými stranami AB a CD pre bod E strany AB plati, že úsečka DE že delí lichobežník na dve časti s rovnakým obsahom. Spočítaj dĺžku úsečky AE.
- Dokážte
Lichobežník ABCD so základňami AB=a, CD=c má výšku v. Bod S je stred ramena BC. Dokážte že obsah trojuholníka ASD sa rovná polovici obsahu lichobežníka ABCD. - Daný je 4
Daný je štvorec ABCD. Na jeho uhlopriečke AC leží bod E tak, že platí vzdialenosť AB je rovná vzdialenosti AE. Aká je veľkosť uhla EBC? - Trojuholník ABC
V trojuholníku ABC so stranou BC dĺžky 2 cm je bod K stredom strany AB. Body L a M rozdeľujú stranu AC na tri zhodné úsečky. Trojuholník KLM je rovnoramenný s pravým uhlom pri vrchole K. Určte dĺžky strán AB, AC trojuholníka ABC.