Příklady na jehlan - strana 12 z 15
Počet nalezených příkladů: 287
- Zdvojnásobíme 6245
Jak se změní objem rotačního kužele, pokud: a) zdvojnásobíme poloměr podstavy b) 3 krát zmenšíme výšku c) 5 krát zmenšíme poloměr podstavy
- Vypočítejte 25321
Vypočítejte objem tělesa, které je složeno z hranolu a jehlanu se stejnou čtvercovou podstavou o hraně 8 cm. Hranol je vysoký 20 cm a jehlan 15 cm.
- Ztrojnásobíme 7903
Jak se změní objem jehlanu, pokud ztrojnásobíme jeho výšku?
- Miško
Miško vymodeloval z plastelíny 15 cm vysoký jehlan s obdélníkovou podstavou se stranami podstavy a = 12 cm a b = 8 cm. Janka z tohoto jehlanu vymodelovala rotační kužel s průměrem podstavy d = 10 cm. Jakou výšku měl Jankin kužel?
- Postavy 64744
Kužel vysoký 12 cm a poloměr postavy je 9cm. Zjisti jeho povrch.
- Krychle 50
Krychle ABCDEFGH má hranu délky 3 cm. Vypočítejte objem jehlanu ABCDH.
- Kostky 8
Z dětských dřevěných kostek tvaru hranolu se čtvercovou podstavou (strana podstavy je 4 cm dlouhá, výška hranolu je 8 cm) je postavena pevnost s věžemi ze dvou kostek nad sebou zakončenými jehlany se stejnou podstavou jako hranoly a výškou 6 cm. Všechny z
- Vypočítejte 26051
Podstava hranolu má tvar čtverce se stranou 10 cm. Výška hranolu je 20 cm. Vypočítejte výšku jehlanu s podstavou tvaru čtverce o straně 10 cm, který má čtyřikrát menší objem než hranol.
- Pyramida
Kolik 50cm x 32cm x 30cm cihel potřebujeme na postavení 272m x 272m x 278m pyramidy?
- Tvrdé dřevo
Tvrdé dřevo pro sloup je ve tvaru komolého jehlanu, pravidelné heptagonálnej (hepta = 7) pyramidy. Dolní hrana základny je 18 cm a horní základna 14 cm. Výška je 30 cm. Zjistěte jeho hmotnost v kg, pokud je hustota dřeva 10 gramů / cm³.
- Komolý jehlan
Vypočtěte objem pravidelného šestibokého komolého jehlanu, jestliže je délka hrany dolní podstavy 30 cm, horní podstavy 12 cm a pokud délka boční hrany je 41 cm.
- Přesýpací hodiny
Přesýpací hodiny sestávají ze dvou shodných nádobek ve tvaru rotačních kuželů. Pro jednoduchost předpokládáme, že koužely se dotýkají pouze svými vrcholy. Písek sahá do poloviny výšky spodního kužele. Po překlopení hodí trvá přesně 21 minut, než se písek
- Šestihran
Pravidelný šestihran (6 úhelník) se stěnou 6 cm je otočen o 60 ° podél přímky procházející její nejdelší úhlopříčce. Jaký je objem takto vytvořeného tělesa?
- Dřevěne misky
20 dřevěných misek tvaru komolého kužele máme natřít zvenku i zevnitř lakem na dřevo. Na natření 200 cm² potřebujeme 0,1 l laku. Kolik litrů laku musíme koupit, pokud jsou misky 25 cm vysoké, dno misky má průměr 20 cm a horní podstava má průměr 30 cm?
- Komolý kužel
Pokud je nádrž zcela plná, nádrž obsahuje 28,54 m³ vody. Průměr horní základny je 3,5 m, zatímco na spodní základně je 2,5 m. Stanovte výšku, pokud je nádrž ve tvaru komolého kužele pravoúhlého kruhového kužele.
- Rovnostranny kužel
Do nádoby tvaru rovnostranného kužele, jehož podstava má poloměr r = 6 cm nalijeme tolik vody, že se naplní jedna třetina objemu kužele. Do jaké výšky bude sahat voda, pokud kužel obrátíme dnem vzhůru?
- Květinový záhon
Květinový záhon má tvar komolého jehlanu, přičemž hrana dolní podstavy a = 10 m, horní podstavy b = 9 m a odchylka počne hrany od podstavy je alfa = 45°. Jaký objem zemniny je potřebný navýšit na tento záhon? Kolik sazenic je možné vysadit, pokud 1m² = 10
- Pravidelného 43851
Jáma má tvar pravidelného seříznutého 4-bokého jehlanu, jejichž podstavné hrany mají velikosti 14m, 10m a hloubka je 6m. Vypočítejte, kolik m³ zeminy bylo při vyhloubení této jámy vyvezeno.
- Seříznutý kužel
Horní a dolní poloměr seříznutého pravého kruhového kužele je 8 cm a 32 cm. Je-li výška seříznutého okraje 10 cm, jak daleko od spodní základny musí být vytvořena rovina řezu, aby se vytvořily dva podobné seříznuté kužele?
Máš úkol, nad kterým si lámeš alespoň 10 minut hlavu? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.