Kužel
Rotační kužel s výškou h = 19 dm a poloměrem podstavy r = 5 dm rozřízneme rovinou rovnoběžnou s podstavou. Určitě vzdálenost vrcholu kužele od této roviny, jestliže vzniklé tělesa mají stejný objem.
Správná odpověď:

Tipy na související online kalkulačky
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Související a podobné příklady:
- Řezy kužele
Kužel s poloměrem podstavy 11 cm a výškou 11 cm rozdělíme rovinami rovnoběžnými s podstavou na tři tělesa. Roviny rozdělí výšku kužele na tři stejné části. Určete poměr objemů největšího a nejmenšího vzniklého tělesa.
- 2x kužel
Rotační kužel o výšce 86 cm byl rozříznut rovinou rovnoběžnou s podstavou tak, že vznikl menší rotační kužel a komolý rotační kužel. Objem těchto dvou těles je stejný. Určete výšku menšího kužele.
- Rotační kužel 5
Vypočítejte objem a povrch rotačního kužele o poloměru podstavy r=4,6dm a výškou v=230mm.
- Objem kužele
Vypočítejte objem kužele s poloměrem podstavy r a výškou v. a) r = 6 cm, v = 8 cm b) r = 0,9 m, v = 2,3 m c) r = 1,4 dm, v = 30 dm
- Vzdálenosti 9911
Objem pravého kruhového kužele je 5 litrů. Vypočítejte objem dvou částí, na které je kužel rozdělen rovinou rovnoběžnou se základnou, v jedné třetině vzdálenosti od vrcholu k základně.
- Rotační kužel II
Vypočítejte povrch rotačního kužele o poloměru podstavy r=17 cm a výškou v=16 cm.
- Na dvě části
Pravidelný jehlan se čtvercovou podstavou rozřízneme rovinou rovnoběžnou s podstavou na dvě části (viz obrázek). Objem vzniklého menšího jehlanu tvoří 20% objemu původního jehlanu. Podstava vzniklého menšího jehlanu má obsah 10 cm². Určete v centimetrech