Mo - kružnice
Juro zostrojil štvorec ABCD so stranou 12 cm. Do tohto štvorca narysoval štvrťkružnicu k, ktorá mala stred v bode B a prechádzala bodom A, a polkružnicu l, ktorá mala stred v strede strany BC a prechádzala bodom B. Rád by ešte zostrojil kružnicu, ktorá by ležala vnútri štvorca a dotýkala sa štvrťkružnice k, polkružnice l aj strany AB. Určte polomer takej kružnice.
Správna odpoveď:
Zobrazujem 3 komentáre:
Mo-radce
Nápoveda. Premýšľajte, ako by ste pomocou polomeru hľadané kružnice vyjadrili vzdialenosť jej stredu od úsečky AB, príp. BC.
Možné riešenie. Počas riešenia sa odkazujeme na obrázok, v ktorom O značí stred strany BC, S značí stred Jurkovej vytúženej kružnice h, K značí dotykový bod kružníc h a k, L značí dotykový bod kružníc hala M značí dotykový bod kružnice ha úsečky AB. Ďalej budeme odkazovať na pomocný bod E, ktorý je pätou kolmice z bodu S na stranu BC. Hľadaný polomer kružnice h v cm označíme r.
Vzdialenosť bodu S od úsečky AB je rovná r = |SM| = |EB|. Vzdialenosť bodu S od úsečky BC je rovná veľkosti úsečky SA, ktorá je odvesnou ako v pravouhlom trojuholníku SEO, tak v trojuholníku SEB. Všetky ostatné strany v oboch trojuholníkoch ľahko vyjadríme pomocou r; odtiaľ pomocou Pytagorovej vety budeme vedieť určiť neznámu r.
Body S a O sú stredy kružníc h a l, ktoré sa dotýkajú v bode L. Tieto tri body ležia na jednej priamke, vzdialenosť SO je preto rovná.
|SO| = |SL| + |LO| = R + 6
Obdobne, vzdialenosť SB je rovná
|SB| = |BK | - |KS| = 12 - r
pretože S a O sú stredy kružníc haka K je ich dotykovým bodom. Vzdialenosť OE je rovná:
|OE| = |OB| - |BE| = 6 - r
Odtiaľ az Pytagorovej vety v trojuholníkoch SEO a SEB dostávame:
|SE|² = |SO|² - |OE|² = |SB|² - |BE|²
(6 + r)² - (6 - r)² = (12 - r)² - r²
12r + 12r = 144 - 24r,
48r = 144,
r = 3.
Polomer hľadanej kružnice je 3 cm
Možné riešenie. Počas riešenia sa odkazujeme na obrázok, v ktorom O značí stred strany BC, S značí stred Jurkovej vytúženej kružnice h, K značí dotykový bod kružníc h a k, L značí dotykový bod kružníc hala M značí dotykový bod kružnice ha úsečky AB. Ďalej budeme odkazovať na pomocný bod E, ktorý je pätou kolmice z bodu S na stranu BC. Hľadaný polomer kružnice h v cm označíme r.
Vzdialenosť bodu S od úsečky AB je rovná r = |SM| = |EB|. Vzdialenosť bodu S od úsečky BC je rovná veľkosti úsečky SA, ktorá je odvesnou ako v pravouhlom trojuholníku SEO, tak v trojuholníku SEB. Všetky ostatné strany v oboch trojuholníkoch ľahko vyjadríme pomocou r; odtiaľ pomocou Pytagorovej vety budeme vedieť určiť neznámu r.
Body S a O sú stredy kružníc h a l, ktoré sa dotýkajú v bode L. Tieto tri body ležia na jednej priamke, vzdialenosť SO je preto rovná.
|SO| = |SL| + |LO| = R + 6
Obdobne, vzdialenosť SB je rovná
|SB| = |BK | - |KS| = 12 - r
pretože S a O sú stredy kružníc haka K je ich dotykovým bodom. Vzdialenosť OE je rovná:
|OE| = |OB| - |BE| = 6 - r
Odtiaľ az Pytagorovej vety v trojuholníkoch SEO a SEB dostávame:
|SE|² = |SO|² - |OE|² = |SB|² - |BE|²
(6 + r)² - (6 - r)² = (12 - r)² - r²
12r + 12r = 144 - 24r,
48r = 144,
r = 3.
Polomer hľadanej kružnice je 3 cm
Tipy na súvisiace online kalkulačky
Pytagorova veta je základ výpočtov aj kalkulačky pravouhlého trojuholníka.
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Téma:
Úroveň náročnosti úlohy:
Súvisiace a podobné príklady:
- Štvoruholník 14
Daný je štvorec ABCD. Stred AB je E, stred BC je F, CD je G a stred DA je H. Spojíme AF, BG, CH a DE. Vo vnútri štvorca (približne v strede) priesečníky týchto úsečiek vytvoria štvoruholník. Vypočítajte obsah tohto štvoruholníka. Ďakujem - Z7-1-6 MO 2018
Daný je rovnoramenný pravouhlý trojuholník ABS so základňou AB. Na kružnici, ktorá má stred v bode S a prechádza bodmi A a B, leží bod C tak, že trojuholník ABC je rovnoramenný. Určte, koľko bodov C vyhovuje uvedeným podmienkam, a všetky také body zostroj - V štvorci
V štvorci ABCD so stranou a = 6 cm je bod E stred strany AB a bod F stred strany BC. Vypočítajte veľkosť všetkých uhlov trojuholníka DEF a dĺžky jeho strán. - Bod B
Bod B je stred kružnice. Priamka AC sa dotýka kružníc v bode C a platí AB=20 cm a AC= 16 cm . Aký je polomer kružnice BC?
- Z8 – I – 3 MO 2018
Peter narysoval pravidelný šesťuholník, ktorého vrcholy ležali na kružnici dĺžky 16 cm. Potom pre každý vrchol tohto šesťuholníka narysoval kružnicu so stredom v tomto vrchole, ktorá prechádzala jeho dvoma susednými vrcholmi. Vznikol tak útvar ako na obrá - Kružnica vpísaná
Je daný trojuholník ABC a kružnica vpísaná do tohto trojuholníka s polomerom 15. Bod T je bodom dotyku vpísanej kružnice so stranou BC. Aká je plocha trojuholníka ABC ak | BT | = 25 a | TC | = 26? - V stredovej súmernosti
Narysuj štvorec KLMN, bod R, ktorý je bodom štvorca a bod S, ktorý nie je bodom tohto štvorca. Narysuj obraz štvorca KLMN v stredovej súmernosti so stredom : a) v bode s b) v bode M c) v bode R