Příklady na tělesová úhlopříčka hranolu
Počet nalezených příkladů: 34
- Petra 4
Petra má ve dvou bedničkách tvaru krychle zasazené květiny. První bednička má vnitřní rozměr 70 cm a druhá 5dm. Chce si vyrobit jednu bedničku tvaru kvádru, kam by obě květiny z těchto bedniček přesadila. Nová bednička má mít stejný vnitřní objem jako obě
- Kvádr 68
Kvádr má tělesovou úhlopříčku u=25 cm a strana b je oproti straně a o třetinu delší. Jaký je objem kvádru?
- Plášt = 2 x podstava
Pravidelný čtyřboký hranol má objem 864cm³ a obsah jeho pláště je dvojnásobkem obsahu jeho podstavy. Určete velikost jeho tělesové úhlopříčky.
- Čtyřboký hranol
Výška pravidelného čtyřbokého hranolu je v = 10 cm, odchylka tělesových úhlopříčky od podstavy je 60°. Určete délku podstavových hran, povrch a objem kvádru.
- Vypočítej 39
Vypočítej objem (V) a povrch (S) pravidelného čtyřbokého hranolu, jehož výška je 28,6 cm a odchylka tělesové úhlopříčky od roviny podlahy je 50°.
- Truhlář
Kvádr s podstavou a rozměry 12 cm a 5 cm a výšce 4 cm. Truhlář tento kvádr rozřezal na dva shodné trojboké hranoly s podstavami ve tvaru pravoúhlého trojúhelníku. Truhlář vytvořeny hranoly natřel barvou. Vypočítejte povrch jednoho z těchto dvou trojbokých
- Objem
Objem pravidelného čtyřbokého hranolu je 192 cm³. Velikost jeho podstavné hrany a tělesových výšky jsou v poměru 1:3. Vypočítejte povrch hranolu.
- Kvádr - úhlopříčka
Vypočítej objem kvádru, jehož tělesova úhlopříčka u se rovná 6,1cm a obdélníková postava má rozměry 3,2cm a 2,4cm
- Zanedbatelným 81670
Do přepravního kontejneru o rozměrech a=10 m, b=4m, c=3m byla umístěna dřevěná bedna o rozměrech d=3m, e=4m a f=3m. Jaká je maximální délka rovné neohebné tyče se zanedbatelným průměrem, kterou lze v této situaci ještě do kontejneru umístit?
- Vypočítejte 248
Vypočítejte objem a povrch pravidelného čtyřbokého hranolu o podstavné hraně a=24 cm, jestliže tělesová úhlopříčka svírá s podstavou úhel 66°
- Hranol 4b-pravidelný
Vypočítejte objem a povrch pravidelného čtyřbokého hranolu jehož výška je 28,6cm a tělesová úhlopříčka svírá s rovinou podstavy úhel 50 stupnů.
- Stěnové úhlopříčky
Pokud jsou stěnové úhlopříčky kvádru x, y a z (diagonály), pak najděte objem kvádru. Vyřešte pro x = 1,2, y = 1,8, z = 1,4
- Poměr délky úhlopříček
Délky hran kvádru jsou v poměru 1:2:3. Budou ve stejném poměru i délky jeho stěnových úhlopříček? Kvádr má rozměry 5 cm, 10 cm a 15 cm. Vypočítejte velikost stěnových úhlopříček tohoto kvádru.
- Odchylka přímek 2
Určite odchylku přímek AH, BH v kvádru ABCDEFGH, je-li dáno |AB| = 3cm, |AD| = 2cm, |AE| = 4cm
- Hranol 23
Hranol ABCDA'B'C'D' má čtvercovou podstavu. Stěnová úhlopříčka AC podstavy má délku 9,9cm, tělesová úhlopříčka AC' má délku 11,4cm. Vypočítejte povrch a objem hranolu.
- Podstavou
Podstavou čtyřbokého hranolu je obdélník o rozměrech 3 dm a 4 dm. Výška hranolu je 1 m. Zjistěte jaký úhel svíra tělesová úhlopříčka s úhlopříčkou podstavy.
- Kvádr
Rozměry kvádru jsou v poměru 3:1:2. Tělesová úhlopříčka má délku 28cm. Vypočítejte objem kvádru.
- Bedna na nářadí
Bedna na nářadí má vnitní rozměry délku 1,5metru šíku 80 cm a výšku 6 dm. Vypočítej jakou nejdelší tyč můžeme do této bedny schovat.
- Tělesová
Tělesová úhlopříčka pravidelného čtyřbokého hranolu svírá s podstavou úhel velikosti 60°. Hrana podstavy má délku 10cm. Vypočítejte objem tělesa.
Máš úkol, nad kterým si lámeš alespoň 10 minut hlavu? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.