Pythagorova věta - slovní úlohy a příklady - strana 53 z 72
Počet nalezených příkladů: 1422
- Pravidelného 6578
Kolik m² látky je třeba na zhotovení stanu pravidelného 3-bokého hranolu pokud je třeba počítat s 2%rezervou látky? Rozměry - 2m 1,6m a výška 1,4m
- Úhel úhlopříčky
V pravidelném 4-bokem jehlanu zvíře boční hrana s úhlopříčkou podstavy úhel 55°. Délka boční hrany je 8 m. Vypočtěte povrch a objem jehlanu.
- Vypočtěte 12
Vypočtěte povrch a objem pravidelného devítibokého jehlanu, měří-li poloměr kružnice vepsané podstavě ρ= 12 cm a výška jehlanu je 24 cm
- Vypočtěte 10
Vypočtěte velikost odchylky tělesové úhlopřičky a boční hrany c kvádru o rozměrech: a=28cm, b=45cm a c=73cm. Dále vypočtěte velikost odchylky tělesové úhlopřičky od roviny podstavy.
- Kužel
Vypočtěte objem a plochu kužele, jehož výška je 10 cm a v osovém řezu svírá se stěnou kužele úhel 30 stupňů.
- Poměr délky úhlopříček
Délky hran kvádru jsou v poměru 1:2:3. Budou ve stejném poměru i délky jeho stěnových úhlopříček? Kvádr má rozměry 5 cm, 10 cm a 15 cm. Vypočítejte velikost stěnových úhlopříček tohoto kvádru.
- Válec 17
V rotačním válci je dáno: V= 120 cm3, v=4 cm. Vypočtětě r, S plášte.
- Střecha 7
Střecha má tvar pravidelného čtyřbokého jehlanu s podstavnou hranou 12m a výškou 4m. Kolik procent připadlo na záhyby a odpad, jestliže se spotřebovalo na jeji zhotovení 181,4m² plechu?
- Kužel 16
Povrch rotačního kužele je 30 cm2, obsah jeho pláště je 20 cm². Vypočtěte odchylku strany tohoto kužele od roviny podstavy.
- Kupola
Klenutý stadion má tvar kulového segmentu s poloměrem základny 150 m. Klenba musí obsahovat objem 3500000 m³. Určitě výšku stadionu uprostřed (zaokrouhlujte na nejbližší desetinu metru).
- Čepice
Šaškova čepice má tvar rotačního kužele. Vypočítejte kolik papíru je třeba utratit na čepici 50 cm vysokou na obvod hlavy 60 cm.
- Vypočítejte 4842
Obsah pláště rotačního válce je polovina obsahu jeho povrchu. Vypočítejte povrch válce, když víte, že úhlopříčka osového řezu je 5cm.
- Krytina
Kolik čtverečních metrů krytiny je potřeba na pokrytí střechy ve tvaru kužele, je-li obvod jeho podstavy 15,7m a výška 30dm
- Devítiboký jehlan
Vypočítejte objem a povrch devítibokého jehlanu, jehož podstavě lze vepsat kružnici o poloměru ρ = 7,2 cm a jehož boční hrana s = 10,9 cm.
- Kostolní střecha
Střecha na budově je kužel s výškou 3 metry a poloměrem, který se rovná polovině výšky střechy. Kolik m² střechy nám třeba opravit, pokud se při bouři poškodilo 20%?
- Osový řez
Osový řez kužele je rovnoramenný trojúhelník, v němž je poměr průměru kužele a stěny kužele 2:3. Vypočtěte jeho objem, pokud víte, že jeho plocha je 314 cm čtverečních.
- Sloup
Vypočítejte objem a povrch podpůrného sloupu tvaru kolmého čtyřbokého hranolu, jehož podstavou je kosočtverec s úhlopříčku u1=102cm, u2=64cm. Výška sloupu je 1,5m.
- Osový řez
Osový řez válce má úhlopříčku dlouhou 37 cm, a víme, že velikost pláště a podstavy je v poměru 2:6. Vypočítejte výšku válce a poloměr podstavy.
- Zavazadlový 83997
Zavazadlový prostor v autě má tvar kvádru s hranami 1,6m x 1,2m x 0,5m (šířka, hloubka, výška). Urči, jakou nejdelší tenkou tyč můžeme položit na dno.
Máš úkol, nad kterým si lámeš alespoň 10 minut hlavu? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.