Rozdělit řezem
Daný je kužel s poloměrem podstavy 10 cm a výšce 12 cm. V jaké výšce nad podstavou ho máme rozdělit řezem rovnoběžným s podstavou, aby objemy obou vzniklých teles byly stejné? Výsledek uveďte v cm.
Správná odpověď:
Tipy na související online kalkulačky
Vyzkoušejte naši kalkulačka na přepočet poměru.
Chcete proměnit jednotku délky?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Chcete proměnit jednotku délky?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- geometrie
- podobnost trojúhelníků
- algebra
- vyjádření neznámé ze vzorce
- stereometrie
- kužel
- komolý jehlan a kužel
- planimetrie
- trojúhelník
- základní funkce
- úměra, poměr
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Související a podobné příklady:
- Řezy kužele
Kužel s poloměrem podstavy 11 cm a výškou 11 cm rozdělíme rovinami rovnoběžnými s podstavou na tři tělesa. Roviny rozdělí výšku kužele na tři stejné části. Určete poměr objemů největšího a nejmenšího vzniklého tělesa. - Do rovnostranného 2
Do rovnostranného kužele s průměrem podstavy 12 cm je vepsána koule. Vypočtěte objem obou těles. Kolik procent objemu kužele vyplňuje vepsaná koule? - 2x kužel
Rotační kužel o výšce 86 cm byl rozříznut rovinou rovnoběžnou s podstavou tak, že vznikl menší rotační kužel a komolý rotační kužel. Objem těchto dvou těles je stejný. Určete výšku menšího kužele. - Je dán 21
Je dán pravidelný čtyřboký jehlan s délkou podstavné hrany a=15cm a výškou v=21cm. Rovnoběžně s podstavou vedeme dvě roviny tak, že rozdělil výšku jehlanu na tři stejné části. Vypočítej poměr objemů vzniklých 3 těles.
- Kužel
Rotační kužel o výšce 15 cm a objemu 10598 cm³ je ve třetině výšky (měřeno zespoda) rozříznut rovinou rovnoběžnou s podstavou. Určete poloměr a obvod kruhovéh řezu. - Nakreslením 83070
Kužel o poloměru 10 cm je rozdělen na dvě části nakreslením roviny přes střed jeho osy, rovnoběžné s jeho základnou. Porovnejte objemy obou částí. - Kužel a kvádr
O kolik procent má kužel o poloměru podstavy r větší objem než stejně vysoký kvádr se čtvercovou podstavou s délkou hrany r?