Vzdálenosti 5148
Ve vzdálenosti 10 m od břehu řeky naměřili základnu AB = 50 m rovnoběžně s břehem. Bod C na druhém břehu řeky je vidět z bodu A pod úhlem 32°30' az bodu B pod úhlem 42°15'. Vypočítejte šířku řeky.
Správná odpověď:
![](/img/48/river_1.jpg)
Tipy na související online kalkulačky
Máte soustavu rovnic a hledáte kalkulačku soustavy lineárních rovnic?
Chcete proměnit jednotku délky?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte si převody jednotek úhlů úhlové stupně, minuty, sekundy, radiány.
Chcete proměnit jednotku délky?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte si převody jednotek úhlů úhlové stupně, minuty, sekundy, radiány.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- geometrie
- podobnost trojúhelníků
- algebra
- soustava rovnic
- vyjádření neznámé ze vzorce
- planimetrie
- trojúhelník
- goniometrie a trigonometrie
- tangens
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Budova 3
Budova vysoká 15 m je vzdálená od břehu řeky 30 m. Ze střechy této budovy je vidět šířku řeky pod úhlem 15°. Jak je řeka široká?
- Vzdálenosti 78434
Strom, který je na protějším břehu řeky vidíme pod úhlem 15° ze vzdálenosti 41m od břehu řeky. Ze břehu řeky vidíme pod úhlem 31°. Jak vysoký je strom?
- Komín
Ze vzdálenosti 36 metrů od paty komína je vidět jeho vršek pod uhlem 53°. Vypočítej výšku komína. Zaokrouhli na dm.
- Řeka
Z pozorovatelny 20 m vysoké a vzdálené 40 m od břehu řeky se jeví šířka řeky v zorném úhlu φ=18°. Vypočítejte šířku řeky.
- Výška domu
Z vyhlídky na kostelní věži ve výšce 65m je vidět vrchol domu pod hloubkovým úhlem alfa = 45° a jeho spodek pod hloubkovým úhlem beta = 58°. Vypočtěte výšku domu a jeho vzdálenost od kostela.
- Pozorovatelně 8129
Letadlo letí ve výšce 22,5 km k pozorovatelně. V okamžiku prvního měření ho bylo vidět pod výškovým úhlem 28° a při druhém měření ve výškovém úhlu 50°. Vypočítejte vzdálenost, kterou proletí mezi těmito dvěma měřeními.
- Vrchol budovy
Z bodů A a B na vodorovném povrchu jsou úhly vyvýšenin horní části budovy 25° a 37°. Pokud | AB | = 57 m, vypočítejte, s přesností na metr, vzdálenosti horní části budovy od A a B, pokud jsou obě na stejné straně budovy