Čtyřúhelník
Ukažte, že čtyřúhelník s vrcholy P1 (0,1), P2 (4,2) P3 (3,6) P4 (-5,4) má dva pravé trojúhelníky.
Správná odpověď:
Tipy na související online kalkulačky
Chcete proměnit jednotku délky?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Chcete proměnit jednotky času, např. hodiny na minuty?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Chcete proměnit jednotky času, např. hodiny na minuty?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- geometrie
- analytická geometrie
- aritmetika
- odmocnina
- planimetrie
- Pythagorova věta
- pravoúhlý trojúhelník
- trojúhelník
- lichoběžník
- kosočtverec
- úhlopříčka
- obdélník
- rovnoběžník
- čtyřúhelník
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Vrcholy trojúhelníku
Ukažte, že body D (2,1), E (4,0), F (5,7) jsou vrcholy pravoúhlého trojúhelníku. - Body pravouhlého trojúhelníku
Ukažte, že body P1 (5,0), P2 (2,1) a P3 (4,7) jsou vrcholy pravého trojúhelníku. - Vepsány čtyřúhelník
Do kružnice je vepsán čtyřúhelník tak, že jeho vrcholy dělí kružnici 1:2:3:4. Vypočítejte velikosti jeho vnitřních úhlů. - Kolineární body
Ukažte, že body A (-1,3), B (3,2), C (11,0) jsou kolineární (leží na jedné přímce).
- Čtyřúhelník
Čtyřúhelník ABCD je složen ze dvou pravoúhlých trojúhelníků ABD a BCD. Pro délky stran platí: | AD | = 3cm, | BC | = 12cm, | BD | = 5cm. Kolik centimetrů čtverečních má čtyřúhelník ABCD? Úhly DAB a DBC jsou pravé. - Čtyřúhelníku 80729
Čtyřúhelník ABCD má délky stran AB=13cm, CD=3cm, AD=4cm. Úhly ACB a ADC jsou pravé. Vypočítej obvod čtyřúhelníku ABCD. - Z6-I-3 2022
Magda si vystřihla dva stejné rovnoramenné trojúhelníky, z nichž každý měl obvod 100 cm. Nejprve z těchto trojúhelníků složila čtyřúhelník tak, že je k sobě přiložila rameny. Poté z nich složila čtyřúhelník tak, že je k sobě přiložila základnami. V prvním