Koule
Průnik roviny a koule je kruh s poloměrem 60mm. Kužel, jehož podstavou je tento kruh a jehož vrchol leží ve středu koule má výšku 34mm. Vypočítejte povrch a objem koule.
Správná odpověď:
Tipy na související online kalkulačky
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Související a podobné příklady:
- Vypočítej 40981
Průnik roviny vzdálené od středu koule 2 cm a této koule je kruh, jehož poloměr je 6cm. Vypočítej povrch a objem koule. - Řezy kužele
Kužel s poloměrem podstavy 11 cm a výškou 11 cm rozdělíme rovinami rovnoběžnými s podstavou na tři tělesa. Roviny rozdělí výšku kužele na tři stejné části. Určete poměr objemů největšího a nejmenšího vzniklého tělesa. - Výsek a kužel
Vypočítejte objem rotačního kužele, jehož pláštěm je kruhová výseč s poloměrem 15 cm a středovým úhlem 63 stupňů. - Vypočítejte 65804
Vypočítejte povrch a objem rotačního kužele, jehož podstava má průměr 6cm, a jeho výška 4cm.
- Hranoly
Otázka č.1: Hranol má rozměry a = 2,5cm, b = 100mm, c = 12cm. Jaký je jeho objem? a) 3000 cm² b) 300 cm² c) 3000 cm³ d) 300 cm³ Otázka č.2: Podstava hranolu je kosočtverec s délkou strany 30 cm a výškou 27 cm. Výška hranolu je 5dm. Jaký je objem hranolu? - Kužel
Obsah pláště kužele je 4 cm², obsah podstavy kužele je 2 cm². Určete v stupních úhel (odchylku) strany kužele a roviny podstavy kužele. (Strana kužele je úsečka spojující vrchol kužele s libovolným bodem kružnice podstavy. Všechny strany kužele tvoří pláš - Kužel
Rotační kužel s výškou h = 19 dm a poloměrem podstavy r = 5 dm rozřízneme rovinou rovnoběžnou s podstavou. Určitě vzdálenost vrcholu kužele od této roviny, jestliže vzniklé tělesa mají stejný objem.