Úvaha + deliteľnosť - príklady a úlohy - strana 6 z 11
Počet nájdených príkladov: 206
- Prsty
Janka počíta na jednej ruke po jednom. Začína počítať od palca cez ukazovák, prostredník a prstenník, príde k malíčku a má číslo 5. Potom sa hned vracia k prstenníku (6), na prostredník (7), ukazovák (8), palec (9) a zase na ukazovák (10), prostredník (11
- C – I – 6 MO 2018
Nájdite všetky trojciferné čísla n s tromi rôznymi nenulovými ciframi, ktoré sú deliteľné súčtom všetkých troch dvojciferných čísel, ktoré dostaneme, keď v pôvodnom čísle vyškrtneme vždy jednu cifru.
- Alej 3
V aleji zostali 4 stromy medzi ktorými sú vzdialenosti 35m,15m a 95m. Do medzier maju byť nasadené stromy, tak aby vzdialenosť bola rovnaká a maximálna. Koľko stromov nasadia a aká bude vzdialenosť medzi nimi?
- MO C–I–1 2018
Neznáme číslo je deliteľné práve štyrmi číslami z množiny {6, 15, 20, 21, 70}. Určite, ktorými.
- Cvičenci
Koľko cvičencov je v telocvični (minimálny počet), ak po zoradení do troch, štyroch a päťstupov je vždy jeden navyše?
- Z7–I–1 MO 2018
Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné
- Z9 – I – 6 2018 MO
Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dv
- Z7–I–4 2018 MO Betka
Betka sa hrala s ozubenými kolesami, ktoré ukladala tak, ako je naznačené na obrázku. Keď potom zatočila jedným okolo, točili sa všetky ostatné. Nakoniec bola spokojná so súkolesím, pričom prvé koleso malo 32 a druhé 24 zubov. Keď sa tretie koleso otočilo
- Hodinový stroj
V hodinovom stroji do seba zapadajú 3 ozubené kolesá. Najväčšie má 168 zubov, prostredné 90 zubov a najmenšie 48 zubov. Prostredné koleso sa otočí okolo svojej osi za 90 sekúnd. Koľkokrát počas dňa sa všetky kolesá stretnú vo východiskovej polohe?
- Určte 2
Určte počet všetkých k-ciferných prirodzených čísel, v ktorých dekadickom zápise nie je 0 a sú v ňom alebo cifry párne alebo cifry nepárne, vždy každá aspoň raz.
- V hoteli
V hoteli,, U prevrátenej deviatky˝ je každé číslo hotelovej izby deliteľné 6. Koľko izieb vieš očíslovať trojciferným číslom zapísaným pomocou cifier 1,8,7,4,9?
- PIN kód
PIN na Mišovej kreditke je štvorciferné číslo. Mišo o ňom kamarátom prezradil: • Je to prvočíslo – teda číslo väčšie ako 1, ktoré je deliteľné iba číslom jedna a sebou samým. • Prvá číslica zľava je väčšia ako druhá. • Druhá číslica zľava je väčšia ako tr
- Deliteľnosť
Ak je 3c54d10 deliteľné číslom 330, aký je súčet c a d?
- Jano vytvoril
Jano vytvoril z kartičky 2 4 5 9 2 dvojciferne čísla. Aká je pravdepodobnosť že náhodne vytvorené čislo bude nepárne?
- Ciferný súčet šesť
Koľko je trojciferných čísel ktore maju ciferný súčet 6?
- Ktoré
Ktoré prirodzené číslo menšie ako 100 má najväčší počet deliteľov?
- Koľko 18
Koľko 3-ciferných čísel možno zostaviť z cifier 1,3,5,7,9 ak cifry nesmú v zápise čísla opakovať? Koľko z nich je delitelných piatimi?
- Traja 18
Traja kamaráti mali na začiatku hry guľôčky v pomere 2:7:4. Mohli mať na konci hry rovnaký počet guľôčok? Zapíšte 0, ak nie, alebo zapíšte minimálny počet guľôčok ktoré spolu mali.
- Do triedy
Do triedy chodí viac ako 20, no menej ako 40 žiakov. Tretina žiakov napísala test z matematiky na jednotku, šestina na dvojku a devätina na trojku. Nikto nedostal štvorku. Koľko žiakov triedy napísalo test na päťku?
Máš úlohu, nad ktorou si lámeš aspoň 10 minút hlavu? Pošli nám úlohu a my Ti ju skúsime vypočítať. Riešenie príkladov z matematiky.