Vektor
Vypočtěte velikost vektoru v⃗ = (-1,5, 4,5, 3, 4,5, -6,75, -4,75)
Správná odpověď:

Tipy na související online kalkulačky
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
Chcete proměnit jednotku délky?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Chcete proměnit jednotku délky?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- geometrie
- vektor
- aritmetika
- absolutní hodnota
- stereometrie
- tělesová úhlopříčka
- planimetrie
- Pythagorova věta
- pravoúhlý trojúhelník
- trojúhelník
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Vektory
Urči velikost vektorů u= (2,4) a v= (-3,3)
- Skalární součin
Vypočtěte skalární součin dvou vektorů: (2,5) (-1, -4)
- Vektor
Vektor u=(3,9,u3) a velikost vektoru u=12. Kolik je u3?
- Vektor PQ
Ze zadaných souřadnic bodů P = (5, 8) a Q = (6, 9), najděte souřadnice a velikost vektoru PQ.
- Vypočítejte: 8172
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (6t²+ 4t ; 3t + 1) kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době t = 2s
- Vypočítejte: 8174
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Čtyřboký jehlan
Je dán pravidelný čtyřboký jehlan ABCDV; | AB | = 4cm; v = 6cm. Určete úhel přímek AD a BV.