Vektory
Vektor a má souřadnice (-7; 18) a vektor b má souřadnice (11; 19). Pokud vektor c = b - a, jaká je velikost vektoru c?
Správná odpověď:
Tipy na související online kalkulačky
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Souřadnice vektoru
Určete souřadnice vektoru u = CD, pokud C (19; -7) a D (-16; -5) - Vektory - základní operace
Dáno jsou body A [-11; 14] B [-1; -18] C[10; -20] a D[19; 15] a. Určitě souřadnice vektorů u = AB v = CD s = DB b. Vypočítejte vektorový součet u + v c. Vypočítejte rozdíl vektorů u-v d. Určitě souřadnice vektoru w = -4.u - Vektor
Určitě souřadnice vektoru u=CD, když C[-18;17], D[7,9]. - Jednotkový vektor
Zjistěte jednotkový vektor (jeho souřadnice) k vektoru AB pokud A[-4; 18], B[-12; -13].
- Vektor PQ
Ze zadaných souřadnic bodů P = (5, 8) a Q = (6, 9), najděte souřadnice a velikost vektoru PQ. - Vypočítejte: 8173
Polohový vektor hmotného bodu, který se pohybuje v rovině, je možné v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (2t + 3t²; 6t + 3), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době - Vypočítejte: 8174
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době