V Kocourkově - Z8-I-6 2019 MO
V Kocourkově používají mince pouze se dvěma hodnotami, které jsou vyjádřeny v kocourkovských korunách kladnými celými čísly. Pomocí dostatečného množství takových mincí je možné zaplatit jakoukoli celočíselnou částku větší než 53 kocourkovských
korun, a to přesně a bez vracení. Částku 53 kocourkovských korun však bez vracení zaplatit nelze.
Zjistěte, které hodnoty mohly být na kocourkovských mincích. Určete alespoň dvě řešení.
korun, a to přesně a bez vracení. Částku 53 kocourkovských korun však bez vracení zaplatit nelze.
Zjistěte, které hodnoty mohly být na kocourkovských mincích. Určete alespoň dvě řešení.
Správná odpověď:
![](/img/91/mince_1.jpg)
Zobrazuji 9 komentářů:
Jaja
Jak jste došli k těm hodnotám, prosím. Rovnice sestavit umím, ale empiricky k hodnotám nedojdou a spočítat nejdou děkuji
5 let 1 Like
Franta
Frobeniovo číslo
Problém mincí (označovaný také jako problém frobenské mince nebo Frobeniův problém po matematikovi Ferdinandu Frobeniovi) je matematický problém, který hledá největší peněžní částku, kterou nelze získat pouze pomocí mincí určených nominálních hodnot. Například největší částka, kterou nelze získat pouze pomocí mincí 3 a 5 jednotek, je 7 jednotek.
Řešení tohoto problému pro danou sadu nominálních hodnot mincí se nazývá Frobeniovo číslo.
Frobeniovo číslo existuje, pokud sada nominálních hodnot mincí nemá společný dělitel větší než 1.
Pokud existují pouze dvě různé nominální hodnoty mincí x a y, potom pro Frobeniovo číslo existuje explicitní vzorec: xy − x − y.
Tento vzorec objevil James Joseph Sylvester v roce 1882.
Známe Frobeniovo číslo: 53, a máme určit x a y. Tedy:
xy – x – y = 53
xy – x – y + 1 = 53 + 1
x(y – 1) – (y – 1) = 54
(y – 1)(x – 1) = 54
Možné dvojice:
2 a 27, to je y = 3, x = 28
3 a 18, to je y = 4, x = 19
6 a 9, to je y = 7, x = 10
Problém mincí (označovaný také jako problém frobenské mince nebo Frobeniův problém po matematikovi Ferdinandu Frobeniovi) je matematický problém, který hledá největší peněžní částku, kterou nelze získat pouze pomocí mincí určených nominálních hodnot. Například největší částka, kterou nelze získat pouze pomocí mincí 3 a 5 jednotek, je 7 jednotek.
Řešení tohoto problému pro danou sadu nominálních hodnot mincí se nazývá Frobeniovo číslo.
Frobeniovo číslo existuje, pokud sada nominálních hodnot mincí nemá společný dělitel větší než 1.
Pokud existují pouze dvě různé nominální hodnoty mincí x a y, potom pro Frobeniovo číslo existuje explicitní vzorec: xy − x − y.
Tento vzorec objevil James Joseph Sylvester v roce 1882.
Známe Frobeniovo číslo: 53, a máme určit x a y. Tedy:
xy – x – y = 53
xy – x – y + 1 = 53 + 1
x(y – 1) – (y – 1) = 54
(y – 1)(x – 1) = 54
Možné dvojice:
2 a 27, to je y = 3, x = 28
3 a 18, to je y = 4, x = 19
6 a 9, to je y = 7, x = 10
4 roky 2 Likes
Matematik
tak skusme: 54 = 55a+2b
a = 55b+2c
a>53
a<70
b>=0
c>=0
a1=54, b1=0, c1=27
a2=55, b2=1, c2=0
a3=56, b3=0, c3=28
a4=57, b4=1, c4=1
a5=58, b5=0, c5=29
a6=59, b6=1, c6=2
a7=60, b7=0, c7=30
a8=61, b8=1, c8=3
a9=62, b9=0, c9=31
a10=63, b10=1, c10=4
a11=64, b11=0, c11=32
a12=65, b12=1, c12=5
a13=66, b13=0, c13=33
a14=67, b14=1, c14=6
a15=68, b15=0, c15=34
a16=69, b16=1, c16=7
cize bingo... mozno jsme to zbytocne obmedzili ze obe mince musi byt mensi nez nebo rovne 53 ...
a = 55b+2c
a>53
a<70
b>=0
c>=0
a1=54, b1=0, c1=27
a2=55, b2=1, c2=0
a3=56, b3=0, c3=28
a4=57, b4=1, c4=1
a5=58, b5=0, c5=29
a6=59, b6=1, c6=2
a7=60, b7=0, c7=30
a8=61, b8=1, c8=3
a9=62, b9=0, c9=31
a10=63, b10=1, c10=4
a11=64, b11=0, c11=32
a12=65, b12=1, c12=5
a13=66, b13=0, c13=33
a14=67, b14=1, c14=6
a15=68, b15=0, c15=34
a16=69, b16=1, c16=7
cize bingo... mozno jsme to zbytocne obmedzili ze obe mince musi byt mensi nez nebo rovne 53 ...
Franta
Text příkladu: Pomocí dostatečného množství takových mincí je možné zaplatit jakoukoli celočíselnou částku větší než 53 kocourkovských korun, a to přesně a bez vracení. Částku 53 kocourkovských korun však bez vracení zaplatit nelze.
Pane "Žák", jak může varianta 55 a 2 vyhovovat tomuto textu?
Panu "Matematikovi" snad rozumí jen on sám.
Pane "Žák", jak může varianta 55 a 2 vyhovovat tomuto textu?
Panu "Matematikovi" snad rozumí jen on sám.
Tipy na související online kalkulačky
Naše kalkulačka pro výpočet procent Vám pomůže rychle vypočítat různé typické úlohy s procenty.
Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Chcete převést dělení přirozených čísel - zjistit podíl a zbytek?
Chcete proměnit jednotky času, např. hodiny na minuty?
Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Chcete převést dělení přirozených čísel - zjistit podíl a zbytek?
Chcete proměnit jednotky času, např. hodiny na minuty?
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- algebra
- množiny
- rovnice
- celočíselná rovnice
- prvočísla
- průnik množin
- aritmetika
- dělení
- základní funkce
- procenta
- logaritmy
- úvaha
- čísla
- přirozená čísla
Jednotky fyzikálních veličin:
Téma:
Úroveň náročnosti úkolu:
Související a podobné příklady:
- Karel 4
Karel má v pokladničce celkem 19 mincí, a to pouze desetikorunové a padesátikorunové mince. Celkem má v pokladničce naspořeno 830 Kč. Které tvrzení je nepravdivé? (Uveď postup řešení u jednotlivých tvrzení. ) a) V pokladničce chybí 170 Kč do tisíce. b) V
- Alešove mince
Aleš má jednu minci, Boris i Cyril mají každý po dvou mincích Aleš má o 5 Kč více než Boris a o 5 Kč méně než Cyril. Pozn. české mince jsou 1,2,5,10,20,50 Kc. Aleš má ___ Kč. Boris má ___ Kč a ___ Kč. Cyril má ___ Kč a ___ Kč. Dohromady mají ___ Kč.
- C–I–4 MO 2017
Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n² (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
- Kvádr
Najděte kvádr, který má povrch stejný jako objem.
- Jirka 4
Jirka jel na černo a chytil ho revizor. Měl zaplatit 1 500 Kč, ale nejdřív neměl peníze a pak na to zapomněl. Pokud nezaplatí včas, bude mu za každý den prodlení účtováno penále ve výši 0,5 ‰ z dlužné částky. a) Na kolik se jeho dluh zvýší, když si vzpome
- Pan Cuketa
Pan Cuketa měl obdelníkovou zahradu. jejíž obvod byl 28 metrů. Obsah celé zahrady vyplnily právě čtyři čtvercové záhony, jejichž rozměry v metrech byly vyjádřeny celými čísly. Určete, jaké rozměry mohla mít zahrada. najděte všechny možnosti a zapište n ja
- Z7–I–6, výstava koček
Na výstavě dlouhosrstých koček se sešlo celkem deset vystavujících. Vystavovalo se v obdélníkové místnosti, ve které byly dvě řady stolů jako na obrázku. Kočky byly označeny navzájem různými čísly v rozmezí 1 až 10 a na každém stole seděla jedna kočka. Ur