Komolý kužel
Kužel s poloměrem podstavy 12 cm a výškou 20 cm byl ve vzdálenosti 6 cm od podstavy seříznutý, čímž vznikl komolý kužel. Zjistěte poloměr podstavy komolého kužele.
Správná odpověď:
![](/img/68/zrezany_kuzel.jpg)
Tipy na související online kalkulačky
Vyzkoušejte naši kalkulačka na přepočet poměru.
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Související a podobné příklady:
- Seříznutý kužel
Vypočítejte objem komolého kužele s poloměry podstáv r1=18 cm, r2 = 9 cm a výškou v = 18 cm.
- Velký kužel
Seříznutý rotační kužel má podstavy s poloměry r1 = 8 cm, r2 = 4 cm a výšku v = 5 cm. Jaký je objem kužele, ze kterého komolý kužel vznikl?
- Lampa
Vypočtěte povrch lampového stínítka tvaru rotačního komolého kužele s průměry podstav 32 cm a 12 cm a výškou 24 cm.
- Objem kužele
Vypočítejte objem kužele s poloměrem podstavy r a výškou v. a) r = 6 cm, v = 8 cm b) r = 0,9 m, v = 2,3 m c) r = 1,4 dm, v = 30 dm
- Komolý kužel
Výška kužele je 7 cm a délka boční strany je 10 cm a spodní poloměr je 3 cm. Jaká by mohla být odpověď na horní poloměr komolého kužele?
- S,V komolý kužel
Vypočítejte povrch a objem komolého kužele poloměr menší postavy je 4cm výška kužele je 4 cm a strana komolého kužele je 5cm.
- Michaela
Michaela má ve své sbírce dvě vázy. První váza má tvar kužele s průměrem podstavy d = 20 cm; druhá váza má tvar komolého kužele s průměrem spodní podstavy d1 = 25 cm a s průměrem horní podstavy d2 = 15 cm. Do které vázy se vejde více vody, pokud výška obo