MO Z6–I–3 2018
Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políčku v horní řadě.
Správná odpověď:
Zobrazuji 9 komentářů:
Žák2
Dobrý den mohli by jste to napsat do těch šestiúhelníků prosím a těm výpočtům vůbec ale vůbec nechápu děkuji vám předem.
Ok
Je to jednoduché. 3 políčka, které se dotýkají musí mít součin 2018, tím pádem je jasný že dole mezi 1 a 2 bude 1009 a nahoře se tedy musí začít 2, jelikož se dotýká dolního políčka 1 a 1009 a pak se to pořád opakuje......
2019/3 je celé číslo, tím pádem víme, že hodnota toho čísla je hodnota, která je na 3. místě v horním řádku - tudíž 1009. Nevím, jestli to vysvětluje dobře, ale takhle to chápu já. :)
2019/3 je celé číslo, tím pádem víme, že hodnota toho čísla je hodnota, která je na 3. místě v horním řádku - tudíž 1009. Nevím, jestli to vysvětluje dobře, ale takhle to chápu já. :)
5 let 5 Likes
Dr Math
Oficialni reseni:
Nápověda. Která čísla můžete doplňovat?
Možné řešení. Prvočíselný rozklad čísla 2018 je 2 · 1009. Číslo 2018 je tedy možné zapsat jako součin tří kladných čísel pouze dvěma způsoby (až na záměnu pořadí činitelů):
1 · 1 · 2018, 1 · 2 · 1009.
Do prázdných polí je tedy možno doplnit pouze některá z čísel 1, 2, 1009 a 2018. Kvůli snadnějšímu vyjadřování si neznámá čísla v prázdných polích označíme:
1
A
B
C
2
D
E
F
G
Aby platilo 1 · A · B = A · B · C, musí být C = 1. Aby platilo A · B · C = B · C · 2, musí být A = 2. Aby platilo B · C · 2 = C · 2 · D, musí být D = B. Takto postupně zjišťujeme 1 = C = E, A = 2 = F, B = D = G atd.
Čísla v polích se tedy pravidelně opakují podle následujícího vzoru:
1
2
B
1
2
B
1
2
B
1
Aby nyní součin libovolných tří navzájem sousedících polí byl 2018, musí být B = 1009. V horním řádku se tedy pravidelně střídá trojice čísel 2, 1, 1009. Jelikož 2019 = 3 · 673, je 2019. políčko třetím políčkem v 673. trojici v horním řádku. Proto je v tomto políčku číslo 1009.
Poznámka. Jakmile víme, která čísla se mohou v polích vyskytovat, můžeme je začít postupně doplňovat do některého z prázdných polí a následně zkoumat, zda a případně jak pokračovat dále. Tak lze vyloučit všechny možnosti až na tu uvedenou výše. (Kdybychom např. doplnili A = 1, potom z požadavku 1 · A · B = 2018 plyne, že B = 2018. Aby dále
platilo A · B · C = 2018, muselo by být C = 1, a tedy B · C · 2 = 2018 · 1 · 2. Tento součin však není 2018, proto A nemůže být 1.)
Řešení, ze kterého není patrné, proč výše uvedené doplnění je jediné možné, nemůže být hodnoceno nejlepším stupněm.
Nápověda. Která čísla můžete doplňovat?
Možné řešení. Prvočíselný rozklad čísla 2018 je 2 · 1009. Číslo 2018 je tedy možné zapsat jako součin tří kladných čísel pouze dvěma způsoby (až na záměnu pořadí činitelů):
1 · 1 · 2018, 1 · 2 · 1009.
Do prázdných polí je tedy možno doplnit pouze některá z čísel 1, 2, 1009 a 2018. Kvůli snadnějšímu vyjadřování si neznámá čísla v prázdných polích označíme:
1
A
B
C
2
D
E
F
G
Aby platilo 1 · A · B = A · B · C, musí být C = 1. Aby platilo A · B · C = B · C · 2, musí být A = 2. Aby platilo B · C · 2 = C · 2 · D, musí být D = B. Takto postupně zjišťujeme 1 = C = E, A = 2 = F, B = D = G atd.
Čísla v polích se tedy pravidelně opakují podle následujícího vzoru:
1
2
B
1
2
B
1
2
B
1
Aby nyní součin libovolných tří navzájem sousedících polí byl 2018, musí být B = 1009. V horním řádku se tedy pravidelně střídá trojice čísel 2, 1, 1009. Jelikož 2019 = 3 · 673, je 2019. políčko třetím políčkem v 673. trojici v horním řádku. Proto je v tomto políčku číslo 1009.
Poznámka. Jakmile víme, která čísla se mohou v polích vyskytovat, můžeme je začít postupně doplňovat do některého z prázdných polí a následně zkoumat, zda a případně jak pokračovat dále. Tak lze vyloučit všechny možnosti až na tu uvedenou výše. (Kdybychom např. doplnili A = 1, potom z požadavku 1 · A · B = 2018 plyne, že B = 2018. Aby dále
platilo A · B · C = 2018, muselo by být C = 1, a tedy B · C · 2 = 2018 · 1 · 2. Tento součin však není 2018, proto A nemůže být 1.)
Řešení, ze kterého není patrné, proč výše uvedené doplnění je jediné možné, nemůže být hodnoceno nejlepším stupněm.
Tipy na související online kalkulačky
Chcete převést dělení přirozených čísel - zjistit podíl a zbytek?
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Související a podobné příklady:
- MO Z6-6-1
Do prázdných polí v následujícím obrázku doplňte celá čísla větší než 1 tak, aby v každém tmavším políčku byl součin čísel ze sousedních světlejších políček: Jaké je číslo je středu? - Z7–I–6, výstava koček
Na výstavě dlouhosrstých koček se sešlo celkem deset vystavujících. Vystavovalo se v obdélníkové místnosti, ve které byly dvě řady stolů jako na obrázku. Kočky byly označeny navzájem různými čísly v rozmezí 1 až 10 a na každém stole seděla jedna kočka. Ur - MO 2019 Z9–I–5
Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vy - Mirek a Zuzka
Obdélník je rozdělený na 7 políček. Na každé políčko se má napsat právě jedno z čísel 1, 2 a 3. Mirek tvrdí, že to lze provést tak, aby součet dvou vedle sebe napsaných čísel byl pokaždé jiný. Zuzka naopak tvrdí, že to možné není. Rozhodněte, kdo z nich m
- Dvě čísla 7
Na obrazovce jsou dvě čísla - jedno v modrém a druhé v červeném poli. Na počátku jsou obě čísla stejná. Při každém pípnutí se obě čísla zvětší - v modrém poli o 1 a v červeném o 3. V jednu chvíli se na obrazovce objeví v modrém poli 49 a v červeném poli č - C–I–4 MO 2017
Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n² (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla. - Richardove čísla Z8-I-2 2019
Richard si pohrával s dvěma pětimístnými čísly. Každé sestávalo z navzájem různých číslic, které u jednoho byly všechny liché a u druhého všechny sudé. Po chvíli zjistil, že součet těchto dvou čísel začíná dvojčíslím 11 a končí číslem 1 a že jejich rozdíl