Kostelní věž
Kostelní věž vidíme z cesty pod úhlem 52°. Když se vzdálíme o 29 metrů, je ji vidět pod úhlem 21°. Jaká je vysoká?
Správná odpověď:
![](/img/29/church_tower.jpg)
Tipy na související online kalkulačky
Potřebujete pomoci sčítat, zkrátít či vynásobit zlomky? Zkuste naši zlomkovou kalkulačku.
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte si převody jednotek úhlů úhlové stupně, minuty, sekundy, radiány.
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte si převody jednotek úhlů úhlové stupně, minuty, sekundy, radiány.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- planimetrie
- pravoúhlý trojúhelník
- trojúhelník
- čísla
- zlomky
- goniometrie a trigonometrie
- sinus
- kosinus
- tangens
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Bezvětří
Za úplného bezvětří vzlétl balón a zůstal stát přesně nad místem, ze kterého vzlétl. To je od nás vzdáleno 250 metrů. Do jaké výšky balón vyletěl, když ho vidíme pod výškovým úhlem 25°?
- Výška domu
Z vyhlídky na kostelní věži ve výšce 65m je vidět vrchol domu pod hloubkovým úhlem alfa = 45° a jeho spodek pod hloubkovým úhlem beta = 58°. Vypočtěte výšku domu a jeho vzdálenost od kostela.
- Komín
Ze vzdálenosti 36 metrů od paty komína je vidět jeho vršek pod uhlem 53°. Vypočítej výšku komína. Zaokrouhli na dm.
- Stožár
Vrchol stožáru vidíme ve výškovém úhlu 45°. Pokud se přiblížíme k stožáru o 10 m, vidíme vrchol pod výškovým úhlem 60°. Jaká je výška stožáru?
- SUS a zorný úhel
Rybník vidíme pod zorným úhlem 65° 37'. Jeho kraje jsou vzdáleny 155 m a 177 m od pozorovatele. Jaká je šířka rybníka?
- Budova 3
Budova vysoká 15 m je vzdálená od břehu řeky 30 m. Ze střechy této budovy je vidět šířku řeky pod úhlem 15°. Jak je řeka široká?
- Triangulace - výškové úhly
Vrchol věže stojící na rovině vidíme z určitého místa A ve výškovém úhlu 39° 25´. Přijdeme-li směrem k jeho patě o 50m blíže na místo B, vidíme z něho vrchol věže ve výškovém úhlu 56° 42´. Jak vysoká je věž?