Pravoúhlý trojúhelník kalkulačka (A,a)
Pravoúhlý různostranný trojúhelník.
Délky stran trojúhelníku:a = 3
b = 1,73220508076
c = 3,46441016151
Obsah trojúhelníku: S = 2,59880762114
Obvod trojúhelníku: o = 8,19661524227
Semiperimeter (poloobvod): s = 4,09880762114
Úhel ∠ A = α = 60° = 1,04771975512 rad
Úhel ∠ B = β = 30° = 0,52435987756 rad
Úhel ∠ C = γ = 90° = 1,57107963268 rad
Výška trojúhelníku na stranu a: va = 1,73220508076
Výška trojúhelníku na stranu b: vb = 3
Výška trojúhelníku na stranu c: vc = 1,5
Těžnice: ta = 2,29112878475
Těžnice: tb = 3,12224989992
Těžnice: tc = 1,73220508076
Úsek ca = 0,86660254038
Úsek cb = 2,59880762114
Poloměr vepsané kružnice: r = 0,63439745962
Poloměr opsané kružnice: R = 1,73220508076
Souřadnice vrcholů: A[3,46441016151; 0] B[0; 0] C[2,59880762114; 1,5]
Těžiště: T[2,02107259422; 0,5]
Souřadnice středu kružnice opsané: U[1,73220508076; -0]
Souřadnice středu vepsané kružnice: I[2,36660254038; 0,63439745962]
Vnější úhly trojúhelníku:
∠ A' = α' = 120° = 1,04771975512 rad
∠ B' = β' = 150° = 0,52435987756 rad
∠ C' = γ' = 90° = 1,57107963268 rad
Vypočítat další trojúhelník
Jak jsme vypočítali tento trojúhelník?
Výpočet trojúhelníku probíhá ve dvou fázích. První fáze je taková, že ze vstupních parametrů se snažíme vypočítat všechny tři strany trojúhelníku. První fáze probíhá různě pro různé zadané trojúhelníky. Druhá fáze je vlastně výpočet ostatních charakteristik trojúhelníku (z již vypočtených stran, proto SSS), jako jsou úhly, plocha, obvod, výšky, těžnice, poloměry kružnic atd. Některé vstupní vstupní údaje vedou i ke dvěm až třem správným řešením trojúhelníku (např. pokud je zadaný obsah trojúhelníku a dvě strany - výsledkem je typicky ostroúhlý a tupoúhlý trojúhelník).1. Zadané vstupní údaje: odvěsna a a úhel α
a=3 α=60°
2. Z úhlu α vypočítáme úhel β:
α+β+90°=180° β=90°−α=90°−60°=30°
3. Z odvěsny a a úhlu α vypočítáme přeponu c:
sinα=a:c c=a/sinα=3/sin(60°)=3,464
4. Z odvěsny a a přepony c vypočítáme odvěsnu b - Pythagorova věta:
c2=a2+b2 b=c2−a2=3,4642−32=1,732
Nyní, když víme délky všech tří stran trojúhelníku, trojúhelník je jednoznačně určen. Dále proto výpočet je stejný a dopočítají se další jeho vlastnosti - výpočet trojúhelníku ze známých tří stran (SSS).
5. Obvod trojúhelníku je součtem délek jeho tří stran
6. Poloviční obvod trojúhelníku
Poloviční obvod trojúhelníku (semiperimeter) je polovina z jeho obvodu. Poloviční obvod trojúhelníku se ve vzorcích pro trojúhelníky často vyskytuje tak, že mu byl přidělen samostatný název (semiperimeter - poloobvod - s). Trojúhelníková nerovnost říká, že nejdelší délka strany trojúhelníku musí být menší než semiperimeter.7. Obsah trojúhelníku
8. Výpočet výšek pravoúhlého trojúhelníku z jeho obsahu.
9. Výpočet vnitřních úhlů trojúhelníku - základní použití sinus funkce
10. Poloměr vepsané kružnice
Vepsaná kružnice v trojúhelníku je kružnice (kruh), který se dotýká každé jeho strany. Všechny trojúhelníky mají vepsanou kružnici a její střed vždy leží uvnitř trojúhelníku. Střed vepsané kružnice je průsečík tří os vnitřních úhlů (průsečík bisektorov). Součin poloměru vepsané kružnice a semiperimetru (poloviny obvodu) trojúhelníku je jeho plocha.11. Poloměr opsané kružnice
Opsaná kružnice trojúhelníku je kružnice, která prochází všemi vrcholy trojúhelníku. Střed opsané kružnice je bod, ve kterém se protínají osy stran trojúhelníku.12. Výpočet těžnic
Těžnice (medián) trojúhelníku je úsečka spojující vrchol se středem protější strany. Každý trojúhelník má tři těžnice a všechny se vzájemně protínají v těžišti trojúhelníku. Těžiště rozděluje těžnice na části v poměru 2: 1, přičemž těžiště je dvakrát blíže ke středu strany jako protilehlý vrchol. Apolloniusovu větu používáme pro výpočet délky těžnic z délek jeho stran.Vypočítat další trojúhelník