Kombinatorická kalkulačka
Kalkulačka vypočítá kolika různými způsoby se dá vybrat k prvků z množiny n prvků. S/bez uvažování poradí, s/bez opakování. Vypočítá počet variací, permutací, kombinací, variací s opakováním a kombinací s opakováním.Výpočet:
Ck(n)=(kn)=k!(n−k)!n! n=10 k=4 C4(10)=(410)=4!(10−4)!10!=4⋅3⋅2⋅110⋅9⋅8⋅7=210
Počet kombinací: 210
Trošku teorie - základy kombinatoriky
Variace
Variace k-té třídy z n prvků je uspořádána k-prvková skupina vytvořená z množiny n prvků. Prvky se neopakují a záleží na pořadí prvků ve skupině (proto uspořádána).Počet variací vypočítáme snadno použitím kombinatorického pravidla součinu. Pokud máme například množinu n = 5 čísel 1,2,3,4,5 a máme udělat variace třetí třídy, bude jejich V3 (5) = 5 * 4 * 3 = 60.
Vk(n)=n(n−1)(n−2)...(n−k+1)=(n−k)!n!
n! voláme faktoriál čísla n a je to součin prvních n přirozených čísel. Zápis s faktoriálu je jen přehlednější, ekvivalentní, pro výpočty je plně dostačující používat postup vyplývající z kombinatorického pravidla součinu.
Permutace
Permutace je synonymický název pro variaci n-té třídy z n-prvků. Je to tedy každá n-prvková uspořádána skupina vytvořená z n-prvků. Prvky se neopakují a záleží na pořadí prvků ve skupině.P(n)=n(n−1)(n−2)...1=n!
Typický příklad je: Máme 4 knihy a kolika způsoby jejich můžeme uspořádat vedle sebe v poličce?
Variace s opakováním
Variace k-té třídy z n prvků je uspořádána k-prvková skupina vytvořených z množiny n prvků, přičemž prvky se mohou opakovat a záleží na jejich pořadí. Typickým příkladem je tvoření čísel z číslic 2,3,4,5 a zjištění jejich počtu. Jejich počet podle kombinatorického pravidla součinu vypočítáme:Vk′(n)=n⋅n⋅n⋅n...n=nk
Permutace s opakováním
Permutace s opakováním je uspořádána k-prvková skupina z n-prvků, přičemž některé prvky se opakují ve skupině. Opakování některých (nebo všech ve skupině) snižuje počet takových permutací s opakováním.Pk1k2k3...km′(n)=k1!k2!k3!...km!n!
Typický příklad je zjistit kolik je sedmimístných čísel vytvořených z číslic 2,2,2, 6,6,6,6.
Kombinace
Kombinace k-té třídy z n prvků je neuspořádaná k-prvková skupina vytvořená z množiny n prvků. Prvky se neopakují a nezáleží na pořadí prvků ve skupině. Neuspořádané skupiny se v matematice volají množiny resp. podmnožiny. Jejich počet je kombinační číslo a vypočte se takto:Ck(n)=(kn)=k!(n−k)!n!
Typický příklad na kombinace je že máme 15 žáků a máme vybrat trojice. Kolik jich bude?
Kombinace s opakováním
Zde vybíráme k prvkové skupiny z n prvků, přičemž nezáleží na pořadí a prvky se mohou opakovat. k je logicky větší než n (jinak bychom dostali kombinace obyčejné). Jejich počet je:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Vysvětlení vzorce - počet kombinaci s opakováním se rovná počtu umístění n-1 oddělovačů na n-1 + k míst. Typický příklad je: jdeme si do obchodu koupit 6 čokolád. V nabídce mají jen 3 druhy. Kolik máme možností? k = 6, n = 3 ..
Základy kombinatoriky v slovních úlohách
- Zasedací pořádek
Kolika způsoby se může posadit 6 osob na 6 židlí (např. obstarávání lístků ve vlaku)?
- Pravděpodobnost jevu
Pravděpodobnost že nastane jev J při 3 nezávislých pokusech je 0,6. Jaká je pravděpodobnost, že jev J nastane při jednom pokusu (pokud při každém pokusu je pravděpodobnost stejná)?
- Obdélníky
Kolik je obdélníků, jejichž délky stran jsou vyjádřeny přirozenými čísly a mají obsah 8937 cm²?
- Obdélník
V obdélníku se stranami 3 a 9 vyznačíme úhlopříčku. Jaká je pravděpodobnost, že náhodně zvolený bod uvnitř obdélníku je blíže k této úhlopříčce, jako k libovolné straně obdélníku?
- 7 statečných
9 hrdinů cválá na 9 koních za sebou. Kolika způsoby je lze seřadit za sebou?
- Počet trojúhelníků
Je dán čtverec ABCD a na každé jeho straně 4 vnitřních bodů. Určete počet všech trojúhelníků s vrcholy v těchto bodech.
- SPZ
Kolik různých SPZ může země mít, pokud se používá 2 písmen následované 3 číslicemi?
- Eso
Z kompletní karetní sady (32 karet) vytáhneme 1 kartu. Jaká je pravděpodobnost, že vytáhneme eso?
- Kružnice
Kolik různých kružnic je určeno 9 body v rovině, jestliže 6 z nich leží v jedné přímce?
- Hokejisté
Po vystřídání si na střídačce náhodně sadlo vedle sebe pět hokejistů. Jaká je pravděpodobnost, že dva nejlepší střelci z této pětice budou sedět vedle sebe?
- Olympiáda
Kolika způsoby se mohou umístit 6 závodníci na medailových pozicích na olympiádě? Na barvě kovu záleží.
- Hokej
Zápas v hokeji skončil výsledkem 3:1. Kolik různých průběhů mohl mít daný zápas?
- Pětimístné
Najdi všechna pětimístné čísla, které se dají vytvořit z čísel 12345 tak, aby se čísla neopakovaly a pak také, aby se cisla opakovaly. Uveď i výpočet.
- Hokej
V hokejovém zápase padlo 6 gólů. Hráli Česko proti Finsku. Češi vyhráli 4:2. V jakém pořadí mohly padnout góly? Kolik bylo možných průběhů hry?
slovní úlohy - více »