Pravoúhlý trojúhelník kalkulačka (A,S)
Pravoúhlý různostranný trojúhelník.
Délky stran trojúhelníku:a = 5,09766953733
b = 7,84882226365
c = 9,35879325858
Obsah trojúhelníku: S = 20
Obvod trojúhelníku: o = 22,30328505956
Semiperimeter (poloobvod): s = 11,15114252978
Úhel ∠ A = α = 33° = 0,57659586532 rad
Úhel ∠ B = β = 57° = 0,99548376736 rad
Úhel ∠ C = γ = 90° = 1,57107963268 rad
Výška trojúhelníku na stranu a: va = 7,84882226365
Výška trojúhelníku na stranu b: vb = 5,09766953733
Výška trojúhelníku na stranu c: vc = 4,27444484033
Těžnice: ta = 8,25215861799
Těžnice: tb = 6,43223365402
Těžnice: tc = 4,67989662929
Úsek ca = 6,58220733359
Úsek cb = 2,77658592499
Poloměr vepsané kružnice: r = 1,7933492712
Poloměr opsané kružnice: R = 4,67989662929
Souřadnice vrcholů: A[9,35879325858; 0] B[0; 0] C[2,77658592499; 4,27444484033]
Těžiště: T[4,04545972786; 1,42548161344]
Souřadnice středu kružnice opsané: U[4,67989662929; -0]
Souřadnice středu vepsané kružnice: I[3,30332026613; 1,7933492712]
Vnější úhly trojúhelníku:
∠ A' = α' = 147° = 0,57659586532 rad
∠ B' = β' = 123° = 0,99548376736 rad
∠ C' = γ' = 90° = 1,57107963268 rad
Vypočítat další trojúhelník
Jak jsme vypočítali tento trojúhelník?
Výpočet trojúhelníku probíhá ve dvou fázích. První fáze je taková, že ze vstupních parametrů se snažíme vypočítat všechny tři strany trojúhelníku. První fáze probíhá různě pro různé zadané trojúhelníky. Druhá fáze je vlastně výpočet ostatních charakteristik trojúhelníku (z již vypočtených stran, proto SSS), jako jsou úhly, plocha, obvod, výšky, těžnice, poloměry kružnic atd. Některé vstupní vstupní údaje vedou i ke dvěm až třem správným řešením trojúhelníku (např. pokud je zadaný obsah trojúhelníku a dvě strany - výsledkem je typicky ostroúhlý a tupoúhlý trojúhelník).1. Zadané vstupní údaje: úhel α a obsah S
α=33° S=20
2. Z úhlu α vypočítáme úhel β:
α+β+90°=180° β=90°−α=90°−33°=57°
3. Z obsahu S, úhlu α a úhlu β vypočítáme přeponu c:
c2 sinαsinβ=2 S c=sinαsinβ2 S c=sin33°⋅ sin57°2⋅ 20=9,358
4. Z obsahu S a přepony c vypočítáme h:
S=2c⋅ h h=2⋅ S/c=2⋅ 20/9,358=4,274
5. Z přepony c a úhlu α vypočítáme odvěsnu a:
sinα=a:c a=c⋅ sinα=9,358⋅ sin(33°)=5,097
6. Z odvěsny a a přepony c vypočítáme odvěsnu b - Pythagorova věta:
c2=a2+b2 b=c2−a2=9,3582−5,0972=7,848
Nyní, když víme délky všech tří stran trojúhelníku, trojúhelník je jednoznačně určen. Dále proto výpočet je stejný a dopočítají se další jeho vlastnosti - výpočet trojúhelníku ze známých tří stran (SSS).
7. Obvod trojúhelníku je součtem délek jeho tří stran
8. Poloviční obvod trojúhelníku
Poloviční obvod trojúhelníku (semiperimeter) je polovina z jeho obvodu. Poloviční obvod trojúhelníku se ve vzorcích pro trojúhelníky často vyskytuje tak, že mu byl přidělen samostatný název (semiperimeter - poloobvod - s). Trojúhelníková nerovnost říká, že nejdelší délka strany trojúhelníku musí být menší než semiperimeter.9. Obsah trojúhelníku
10. Výpočet výšek pravoúhlého trojúhelníku z jeho obsahu.
11. Výpočet vnitřních úhlů trojúhelníku - základní použití sinus funkce
12. Poloměr vepsané kružnice
Vepsaná kružnice v trojúhelníku je kružnice (kruh), který se dotýká každé jeho strany. Všechny trojúhelníky mají vepsanou kružnici a její střed vždy leží uvnitř trojúhelníku. Střed vepsané kružnice je průsečík tří os vnitřních úhlů (průsečík bisektorov). Součin poloměru vepsané kružnice a semiperimetru (poloviny obvodu) trojúhelníku je jeho plocha.13. Poloměr opsané kružnice
Opsaná kružnice trojúhelníku je kružnice, která prochází všemi vrcholy trojúhelníku. Střed opsané kružnice je bod, ve kterém se protínají osy stran trojúhelníku.14. Výpočet těžnic
Těžnice (medián) trojúhelníku je úsečka spojující vrchol se středem protější strany. Každý trojúhelník má tři těžnice a všechny se vzájemně protínají v těžišti trojúhelníku. Těžiště rozděluje těžnice na části v poměru 2: 1, přičemž těžiště je dvakrát blíže ke středu strany jako protilehlý vrchol. Apolloniusovu větu používáme pro výpočet délky těžnic z délek jeho stran.Vypočítat další trojúhelník