Trojuholník 8 9 12




Ostrouhlý rôznostranný trojuholník.

Dĺžky strán trojuholníka:
a = 8
b = 9
c = 12

Obsah trojuholníka: S = 35,9999131934
Obvod trojuholníka: o = 29
Semiperimeter (poloobvod): s = 14,5

Uhol ∠ A = α = 41,80990791939° = 41°48'33″ = 0,73297060892 rad
Uhol ∠ B = β = 48,58988113619° = 48°35'20″ = 0,84880347379 rad
Uhol ∠ C = γ = 89,60221094442° = 89°36'8″ = 1,56438518265 rad

Výška trojuholníka na stranu a: va = 98,9997829835
Výška trojuholníka na stranu b: vb = 87,9998070964
Výška trojuholníka na stranu c: vc = 65,9998553223

Ťažnica: ta = 9,82334413522
Ťažnica: tb = 9,15215026089
Ťažnica: tc = 6,04215229868

Polomer vpísanej kružnice: r = 2,48326987541
Polomer opísanej kružnice: R = 66,0001446812

Súradnice vrcholov: A[12; 0] B[0; 0] C[5,29216666667; 65,9998553223]
Ťažisko: T[5,76438888889; 21,9999517741]
Súradnice stredu opísanej kružnice: U[6; 0,04216676714]
Súradnice stredu vpísanej kružnice: I[5,5; 2,48326987541]

Vonkajšie uhly trojuholníka:
∠ A' = α' = 138,19109208061° = 138°11'27″ = 0,73297060892 rad
∠ B' = β' = 131,41111886381° = 131°24'40″ = 0,84880347379 rad
∠ C' = γ' = 90,39878905558° = 90°23'52″ = 1,56438518265 rad


Vypočítať ďaľší trojuholník

Ako sme vypočítali tento trojuholník?


Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený.
a=8 b=9 c=12

1. Obvod trojuholníka je súčtom dĺžok jeho troch strán

o=a+b+c=8+9+12=29

2. Polovičný obvod trojuholníka

Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.

3. Obsah trojuholníka pomocou Herónovho vzorca

Herónov vzorec dáva obsah trojuholníka, keď sú známe dĺžky všetkých troch strán. Nie je potrebné najprv vypočítať uhly alebo iné vzdialenosti v trojuholníku. Herónov vzorec funguje rovnako dobre vo všetkých prípadoch a druhoch trojuholníkov.

4. Výpočet výšiek trojuholníku z jeho obsahu.

Existuje veľa spôsobov, ako zistiť výšku trojuholníka. Najjednoduchší spôsob je zo vzorca, keď poznáme obsah a dĺžku základne. Plocha trojuholníka je polovicou súčinu dĺžky základne a výšky. Každá strana trojuholníka môže byť základňou; existujú teda tri základne a tri výšky. Výška trojuholníka je kolmá úsečka od vrcholu po priamku obsahujúcu základňu.

5. Výpočet vnútorných uhlov trojuholníka pomocou kosínusovej vety

Kosínusová veta je užitočná pri hľadaní uhlov trojuholníka, keď poznáme všetky tri strany. Kosínusová veta spája všetky tri strany trojuholníka s uhlom trojuholníka. Kosínusová veta je extrapoláciou Pytagorovej vety pre akýkoľvek trojuholník. Pythagorova veta funguje iba v pravouhlom trojuholníku. Pythagorova veta je osobitným prípadom Kosínusovej vety a dá sa z neho odvodiť, pretože kosínus 90 ° je 0. Najlepšie je najskôr nájsť uhol oproti najdlhšej strane. V prípade kosínusovej vety neexistuje problém s tupými uhlami ako v prípade sínusovej vety, pretože funkcia kosínus je záporná pre tupé uhly, nulová pre pravé a kladná pre ostré uhly. Na určenie uhla z hodnoty kosínusu používame inverzný kosínus nazývaný arkuskosínus.

a2=b2+c22bccosα  α=arccos(2bcb2+c2a2)=arccos(2 9 1292+12282)=41°4833"  b2=a2+c22accosβ β=arccos(2aca2+c2b2)=arccos(2 8 1282+12292)=48°3520" γ=180°αβ=180°41°4833"48°3520"=89°368"

6. Polomer vpísanej kružnice

Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.

7. Polomer opísanej kružnice

Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.

8. Výpočet ťažníc

Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.


Vypočítať ďaľší trojuholník