Trojuholník 2 8 9




Tupouhlý rôznostranný trojuholník.

Dĺžky strán trojuholníka:
a = 2
b = 8
c = 9

Obsah trojuholníka: S = 7,31100957586
Obvod trojuholníka: o = 19
Semiperimeter (poloobvod): s = 9,5

Uhol ∠ A = α = 11,71658523949° = 11°42'57″ = 0,2044480199 rad
Uhol ∠ B = β = 54,31546652873° = 54°18'53″ = 0,94879697414 rad
Uhol ∠ C = γ = 113,96994823178° = 113°58'10″ = 1,98991427132 rad

Výška trojuholníka na stranu a: va = 7,31100957586
Výška trojuholníka na stranu b: vb = 1,82875239397
Výška trojuholníka na stranu c: vc = 1,62444657241

Ťažnica: ta = 8,45657672626
Ťažnica: tb = 5,14878150705
Ťažnica: tc = 3,70880992435

Polomer vpísanej kružnice: r = 0,76994837641
Polomer opísanej kružnice: R = 4,925469609

Súradnice vrcholov: A[9; 0] B[0; 0] C[1,16766666667; 1,62444657241]
Ťažisko: T[3,38988888889; 0,54114885747]
Súradnice stredu opísanej kružnice: U[4,5; -2,00106577866]
Súradnice stredu vpísanej kružnice: I[1,5; 0,76994837641]

Vonkajšie uhly trojuholníka:
∠ A' = α' = 168,28441476051° = 168°17'3″ = 0,2044480199 rad
∠ B' = β' = 125,68553347127° = 125°41'7″ = 0,94879697414 rad
∠ C' = γ' = 66,03105176822° = 66°1'50″ = 1,98991427132 rad


Vypočítať ďaľší trojuholník

Ako sme vypočítali tento trojuholník?


Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený.
a=2 b=8 c=9

1. Obvod trojuholníka je súčtom dĺžok jeho troch strán

o=a+b+c=2+8+9=19

2. Polovičný obvod trojuholníka

Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.

3. Obsah trojuholníka pomocou Herónovho vzorca

Herónov vzorec dáva obsah trojuholníka, keď sú známe dĺžky všetkých troch strán. Nie je potrebné najprv vypočítať uhly alebo iné vzdialenosti v trojuholníku. Herónov vzorec funguje rovnako dobre vo všetkých prípadoch a druhoch trojuholníkov.

4. Výpočet výšiek trojuholníku z jeho obsahu.

Existuje veľa spôsobov, ako zistiť výšku trojuholníka. Najjednoduchší spôsob je zo vzorca, keď poznáme obsah a dĺžku základne. Plocha trojuholníka je polovicou súčinu dĺžky základne a výšky. Každá strana trojuholníka môže byť základňou; existujú teda tri základne a tri výšky. Výška trojuholníka je kolmá úsečka od vrcholu po priamku obsahujúcu základňu.

5. Výpočet vnútorných uhlov trojuholníka pomocou kosínusovej vety

Kosínusová veta je užitočná pri hľadaní uhlov trojuholníka, keď poznáme všetky tri strany. Kosínusová veta spája všetky tri strany trojuholníka s uhlom trojuholníka. Kosínusová veta je extrapoláciou Pytagorovej vety pre akýkoľvek trojuholník. Pythagorova veta funguje iba v pravouhlom trojuholníku. Pythagorova veta je osobitným prípadom Kosínusovej vety a dá sa z neho odvodiť, pretože kosínus 90 ° je 0. Najlepšie je najskôr nájsť uhol oproti najdlhšej strane. V prípade kosínusovej vety neexistuje problém s tupými uhlami ako v prípade sínusovej vety, pretože funkcia kosínus je záporná pre tupé uhly, nulová pre pravé a kladná pre ostré uhly. Na určenie uhla z hodnoty kosínusu používame inverzný kosínus nazývaný arkuskosínus.

a2=b2+c22bccosα  α=arccos(2bcb2+c2a2)=arccos(2 8 982+9222)=11°4257"  b2=a2+c22accosβ β=arccos(2aca2+c2b2)=arccos(2 2 922+9282)=54°1853" γ=180°αβ=180°11°4257"54°1853"=113°5810"

6. Polomer vpísanej kružnice

Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.

7. Polomer opísanej kružnice

Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.

8. Výpočet ťažníc

Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.


Vypočítať ďaľší trojuholník