Pravouhlý trojuholník kalkulačka
Pravouhlý rôznostranný trojuholník.
Dĺžky strán trojuholníka:a = 7,8143635707
b = 22,69224458144
c = 24
Obsah trojuholníka: S = 88,65552524469
Obvod trojuholníka: o = 54,50660815214
Semiperimeter (poloobvod): s = 27,25330407607
Uhol ∠ A = α = 19° = 0,33216125579 rad
Uhol ∠ B = β = 71° = 1,23991837689 rad
Uhol ∠ C = γ = 90° = 1,57107963268 rad
Výška trojuholníka na stranu a: va = 22,69224458144
Výška trojuholníka na stranu b: vb = 7,8143635707
Výška trojuholníka na stranu c: vc = 7,38879377039
Ťažnica: ta = 23,02662963322
Ťažnica: tb = 13,77664174306
Ťažnica: tc = 12
Úsek ca = 21,45661290433
Úsek cb = 2,54438709567
Polomer vpísanej kružnice: r = 3,25330407607
Polomer opísanej kružnice: R = 12
Súradnice vrcholov: A[24; 0] B[0; 0] C[2,54438709567; 7,38879377039]
Ťažisko: T[8,84879569856; 2,46326459013]
Súradnice stredu opísanej kružnice: U[12; 0]
Súradnice stredu vpísanej kružnice: I[4,56105949463; 3,25330407607]
Vonkajšie uhly trojuholníka:
∠ A' = α' = 161° = 0,33216125579 rad
∠ B' = β' = 109° = 1,23991837689 rad
∠ C' = γ' = 90° = 1,57107963268 rad
Vypočítať ďaľší trojuholník
Ako sme vypočítali tento trojuholník?
Výpočet trojuholníka prebieha v dvoch fázach. Prvá fáza je taká, že zo vstupných parametrov sa snažíme vypočítať všetky tri strany trojuholníka. Prvá fáza prebieha rôzne pre rôzne zadané trojuholníky. Druhá fáza je vlastne výpočet ostatných charakteristík trojuholníka (z už vypočítaných strán, preto SSS), ako sú uhly, plocha, obvod, výšky, ťažnice, polomery kružníc atď. Niektoré vstupné vstupné údaje vedú aj v dvom až trom správnym riešeniam trojuholníka (napr. ak je zadaný obsah trojuholníka a dve strany - výsledkom je typicky ostrouhlý a aj tupouhlý trojuholník).1. Zadané vstupné údaje: prepona c a uhol β
c=24 β=71°
2. Z úhla β vypočítame uhol α:
α+β+90°=180° α=90°−β=90°−71°=19°
3. Z prepony c a úhla α vypočítame odvesnu a:
sinα=a:c a=c⋅ sinα=24⋅ sin(19°)=7,814
4. Z odvesny a a prepony c vypočítame odvesnu b - Pytagorova veta:
c2=a2+b2 b=c2−a2=242−7,8142=22,692
Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený. Ďalej preto výpočet je rovnaký a dopočítajú sa ďaľšie jeho vlastnosti - vlastne výpočet trojuholníka zo známych troch strán (SSS).
5. Obvod trojuholníka je súčtom dĺžok jeho troch strán
6. Polovičný obvod trojuholníka
Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.7. Obsah trojuholníka
8. Výpočet výšiek pravoúhleho trojuholníku z jeho obsahu.
9. Výpočet vnútorných uhlov trojuholníka - základné použitie sínus funkcie
10. Polomer vpísanej kružnice
Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.11. Polomer opísanej kružnice
Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.R=2c=224=12
12. Výpočet ťažníc
Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.Vypočítať ďaľší trojuholník