Kombinácie bez opakovania n=10, k=2 výsledok
Kalkulačka vypočíta koľkými rôznymi spôsobmi sa dajú vybrať k prvkov z množiny n prvkov. S/bez uvažovania poradia, s/bez opakovania. Vypočíta počet variácií, permutácií, kombinácií, variácií s opakovaním a kombinácií s opakovaním:Výpočet:
Ck(n)=(kn)=k!(n−k)!n! n=10 k=2 C2(10)=(210)=2!(10−2)!10!=2⋅110⋅9=45
Počet kombinácií: 45
Trošku teórie - základy kombinatoriky
Variácie
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine (preto usporiadaná).Počet variácií vypočítame ľahko použitím kombinatorického pravidla súčinu. Ak máme napríklad množinu n=5 čísel 1,2,3,4,5 a máme urobiť variácie tretej triedy, bude ich V3(5) = 5*4*3 = 60.
Vk(n)=n(n−1)(n−2)...(n−k+1)=(n−k)!n!
n! voláme faktoriál čísla n a je to súčin prvých n prirodzených čísel. Zápis s faktoriálom je len prehľadnejší, ekvivalentný, pre výpočty je plne postačujúce používať postup vyplývajúci z kombinatorického pravidla súčinu.
Permutácie
Permutácia je synonymický názov pre variáciu n-tej triedy z n-prvkov. Je to teda každá n-prvková usporiadaná skupina vytvorená z n-prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine.P(n)=n(n−1)(n−2)...1=n!
Typický príklad je: Máme 4 knihy a koľkými spôsobmi ich môžme usporiadať vedľa seba v poličke?
Variácie s opakovaním
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorených z množiny n prvkov, pričom prvky sa môžu opakovať a záleží na ich poradí. Typickým príkladom je tvorenie čísel z číslic 2,3,4,5 a zistenie ich počtu. Ich počet podľa kombinatorického pravidla súčinu vypočítame:Vk′(n)=n⋅n⋅n⋅n...n=nk
Permutácie s opakovaním
Permutácia s opakovaním je usporiadaná k-prvková skupina z n-prvkov, pričom niektoré prvky sa opakujú v skupine. Opakovanie niektorých (alebo všetkých v skupine) znižuje počet takýchto permutácií s opakovaním.Pk1k2k3...km′(n)=k1!k2!k3!...km!n!
Typický príklad je zistiť koľko je sedemmiestnych čísel utvorených z číslic 2,2,2, 6,6,6,6.
Kombinácie
Kombinácia k-tej triedy z n prvkov je neusporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a nezáleži na poradí prvkov v skupine. Neusporiadané skupiny sa v matematike volajú množiny resp. podmnožiny. Ich počet je kombinačné číslo a vypočíta sa takto:Ck(n)=(kn)=k!(n−k)!n!
Typický príklad na kombinácie je že máme 15 žiakov a máme vybrať trojice. Koľko ich bude?
Kombinácie s opakovaním
Tu vyberáme k prvkové skupiny z n prvkov, pričom nezáleží na poradí a prvky sa môžu opakovať. k je logicky väčšie ako n (inak by sme dostali kombinácie obyčajné). Ich počet je:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Vysvetlenie vzorca - počet kombinácii s opakovaním sa rovná počtu umiestnení n−1 oddeľovačov na n-1+k miest. Typický príklad je: ideme si do obchodu kúpiť 6 čokolád. V ponuke majú len 3 druhy. Koľko máme možností? k=6, n=3..
Základy kombinatoriky v slovných úlohách
- Zasadací poriadok
Koľkými spôsobmi sa môže posadiť 6 osôb na 3 stoličiek (napr. miestenky vo vlaku)?
- Poistka
Majiteľ domu je poistený voči živelným pohromám a platí ročne 0,06% z hodnoty domu poistku 124 Eur. Vypočítajte hodnotu jeho domu. Vypočítajte aká je pravdepodobnosť živelnej pohromy, ak viete že 44% z ceny poistky ide na úhradu škôd.
- Futbalová liga
V 3. futbalovej lige je 14 mužstiev. Koľkými spôsobmi môže byť obsazeno prvé, druhé a tretie miesto?
- Turnaj
Určite koľkými spôsobmi je možné vybrať z 34 žiakov two zástupcovia triedy na školský turnaj.
- Obchod
Zo štatistiky predajnosti tovar sa zistilo, že tovar A si kúpi 51% ľudí a tovar B si kúpi 59% ľudí. Aká je pravdepodobnosť, že z 10 ľudí si 2 ľudí kúpi A a 8 ľudí značku B?
- Pravdepodobnosť javu
Pravdepodobnosť že nastane jav M pri 10 nezávislých pokusoch je 0,49. Aká je pravdepodobnosť, že jav M nastane pri jednom pokuse (ak pri každom pokuse je pravdepodobnosť rovnaká)?
- Obdĺžniky
Koľko je obdĺžnikov, ktorých dĺžky strán sú vyjadrené prirodzenými číslami a majú obsah 9821 cm²?
- Obdĺžnik
V obdĺžniku so stranami 6 a 3 vyznačíme uhlopriečku. Aká je pravdepodobnosť, že náhodne zvolený bod vnútri obdĺžnika je bližšie k tejto uhlopriečke, ako k ľubovoľnej strane obdĺžnika?
- 7 statočných
9 hrdinov cvála na 9 koňoch za sebou. Koľkými spôsobmi ich možno zoradiť za sebou?
- Tombola 2
V tombole predali 200 lístkov, z toho 5 bolo výherných. Aká je pravdepodobnosť, že Kubo, ktorý si kúpil 1 lístok, vyhrá?
- Manželia
Pri stole sedí 10 ľudí, 5 na jednej a 5 na opačnej strane. Medzi nimi sú 4 manželské páry. Každý manželský pár chce sedieť oproti sebe. Koľkými spôsobmi sa môžu usadiť?
- Počet trojuholníkov
Je daný štvorec ABCD a na každej jeho strane 6 vnútorných bodov. Určte počet všetkých trojuholníkov s vrcholmi v týchto bodoch.
- ŠPZ
Koľko rôznych ŠPZ môže krajina mať, ak sa používa 3 písmen nasledované 2 číslicami?
- Kopec
Do kopca vedú 2 cesty a 1 lanovka. a)koľko je všetkých možností tam a späť b)koľko je všetkých možností aby cesta tam a späť nebola rovnaká c)koľko je všetkých možností aby sme išli aspoň raz lanovkou
slovné úlohy - viacej »