Trojúhelník 32183
V rovině je dán trojúhelník ABC. A(-3,5), B(2,3), C(-1,-2) zapište souřadnice vektorů u, v, w pokud u=AB, v=AC, w=BC. Zapište souřadnice středů úseček SAB(. .), SAC(. .. ), SBC(. .. )
Správná odpověď:

Tipy na související online kalkulačky
Hledáte pomoc s výpočtem aritmetického průměru?
Hledáte statistickou kalkulačku?
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Hledáte statistickou kalkulačku?
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Související a podobné příklady:
- Vrcholy trojúhelníku
Určete souřadnice vrcholu trojúhelníku ABC, známe-li středy SAB [0;3] SBC [1;6] SAC [4;5], jeho stran AB, BC, AC.
- Podobný
Pokud trojúhelník ABC ~ (podobný) trojúhelníku XYZ, AC = 24, AB = 15, BC = 17 a XY = 9, jaký je obvod trojúhelníku XYZ? Zaokrouhlete všechny strany na 1 desetinné místo.
- Trojúhelníku 60993
V pravoúhlém trojúhelníku ABC vypočítejte velikost vnitřních úhlů, pokud/AB/ = 13 cm; /BC/ = 12 cm a/AC/ = 5 cm.
- Rovnoramenný trojúhelník
Narýsujte rovnoramenný trojúhelník ABC, pokud AB = 7cm, velikost úhlu ABC je 47°, ramena | AC | = | BC |. Změřte velikost strany BC v mm.
- Půlkruh
V půlkruhu se středem S a průměrem AB je sestrojen rovnostranný trojúhelník SBC. Jaká je velikost úhlu ∠ SAC?
- Trojúhelníku 47071
V trojúhelníku ABC, pravoúhlý úhel je na vrcholu B. Strany /AB/=7cm, /BC/=5cm, /AC/=8,6cm. Najděte na dvě desetinná místa. A. sinus úhlu C B. Kosinus C C. Tangenta C.
- Trojúhelník 84106
Neoplocený travnatý porost je pravoúhlý trojúhelník ABC s AB = 4 m, BC = 8 ma AC jako přepona. Koza je přivázána k 5 m dlouhému lanu s kolíkem v bodě O, který je 2m od strany AB a 2m od prodloužení strany BC přes roh B. 1. Jak daleko je O od C v metrech?