Kombinácie bez opakovania n=36, k=6 výsledok
Kalkulačka vypočíta koľkými rôznymi spôsobmi sa dajú vybrať k prvkov z množiny n prvkov. S/bez uvažovania poradia, s/bez opakovania. Vypočíta počet variácií, permutácií, kombinácií, variácií s opakovaním a kombinácií s opakovaním:Výpočet:
Ck(n)=(kn)=k!(n−k)!n! n=36 k=6 C6(36)=(636)=6!(36−6)!36!=6⋅5⋅4⋅3⋅2⋅136⋅35⋅34⋅33⋅32⋅31=1947792
Počet kombinácií: 1947792
1947792
Trošku teórie - základy kombinatoriky
Variácie
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine (preto usporiadaná).Počet variácií vypočítame ľahko použitím kombinatorického pravidla súčinu. Ak máme napríklad množinu n=5 čísel 1,2,3,4,5 a máme urobiť variácie tretej triedy, bude ich V3(5) = 5*4*3 = 60.
Vk(n)=n(n−1)(n−2)...(n−k+1)=(n−k)!n!
n! voláme faktoriál čísla n a je to súčin prvých n prirodzených čísel. Zápis s faktoriálom je len prehľadnejší, ekvivalentný, pre výpočty je plne postačujúce používať postup vyplývajúci z kombinatorického pravidla súčinu.
Permutácie
Permutácia je synonymický názov pre variáciu n-tej triedy z n-prvkov. Je to teda každá n-prvková usporiadaná skupina vytvorená z n-prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine.P(n)=n(n−1)(n−2)...1=n!
Typický príklad je: Máme 4 knihy a koľkými spôsobmi ich môžme usporiadať vedľa seba v poličke?
Variácie s opakovaním
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorených z množiny n prvkov, pričom prvky sa môžu opakovať a záleží na ich poradí. Typickým príkladom je tvorenie čísel z číslic 2,3,4,5 a zistenie ich počtu. Ich počet podľa kombinatorického pravidla súčinu vypočítame:Vk′(n)=n⋅n⋅n⋅n...n=nk
Permutácie s opakovaním
Permutácia s opakovaním je usporiadaná k-prvková skupina z n-prvkov, pričom niektoré prvky sa opakujú v skupine. Opakovanie niektorých (alebo všetkých v skupine) znižuje počet takýchto permutácií s opakovaním.Pk1k2k3...km′(n)=k1!k2!k3!...km!n!
Typický príklad je zistiť koľko je sedemmiestnych čísel utvorených z číslic 2,2,2, 6,6,6,6.
Kombinácie
Kombinácia k-tej triedy z n prvkov je neusporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a nezáleži na poradí prvkov v skupine. Neusporiadané skupiny sa v matematike volajú množiny resp. podmnožiny. Ich počet je kombinačné číslo a vypočíta sa takto:Ck(n)=(kn)=k!(n−k)!n!
Typický príklad na kombinácie je že máme 15 žiakov a máme vybrať trojice. Koľko ich bude?
Kombinácie s opakovaním
Tu vyberáme k prvkové skupiny z n prvkov, pričom nezáleží na poradí a prvky sa môžu opakovať. k je logicky väčšie ako n (inak by sme dostali kombinácie obyčajné). Ich počet je:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Vysvetlenie vzorca - počet kombinácii s opakovaním sa rovná počtu umiestnení n−1 oddeľovačov na n-1+k miest. Typický príklad je: ideme si do obchodu kúpiť 6 čokolád. V ponuke majú len 3 druhy. Koľko máme možností? k=6, n=3..
Základy kombinatoriky v slovných úlohách
- Lotéria
V lotérií je 47000 losov z ktorých 5900 vyhráva. Aká je pravdepodobnosť, že po zakúpení 9 losov, účastník lotérie nič nevyhrá?
- Morseovka
Vypočítajte, koľko slov Morseovej abecedy je možné vytvoriť zostavením čiarok a bodiek do slova o jednom až štyroch znakoch.
- Strelec
Pravdepodobnosť že dobrý strelec zasiahne stred terča - kruh I je 0,1. Pravdepodobnosť že zasiahne medzikruh terča II je 0,58. Aká je pravdepodobnosť že zasiahne oblasť terča I alebo II?
- Výpočet KČ
Vypočítajte: (1000 choose 114) - (1000 choose 886)
- ŠPZ
Koľko rôznych ŠPZ môže krajina mať, ak sa používa 3 písmen nasledované 2 číslicami?
- Variácie
Určte počet prvkov ak je počet variacií štvrtej triedy bez opakovania 41-krát väčší ako počet variacií tretej triedy bez opakovania.
- Sedemsegmentovka
Lenka sa bavila tým, že vyťukávala na kalkulačke (sedemsegmentový displej) čísla, pričom používala iba číslice od 2 do 9. Zápisy niektorých čísel mali tú vlastnosť, že ich obraz v osovej alebo stredovej súmernosti bol opäť zápisom nejakého čísla. Určte po
- Ako fungujú senáty
Rozhodovacia komisia je tvorená troma ľuďmi. Aby bolo rozhodnutie komisie plátne, je nutné, aby najmenej dvaja členovia hlasovali rovnako. V komisii nieje možné nehlasovať, každý hlasuje iba áno, alebo nie. Predpokladáme, že prví dvaja členovia komisie sú
- Heslo
Kamila si chce zmeniť heslo daliborZ tak, že a) dve spoluhlásky vymení navzájom medzi sebou, b) zmení jednu malú samohlásku na takú istú veľkú samohlásku c) urobí obidve zmeny. Koľko možností má na výber?
- Variácie 3. triedy
Z koľkých prvkov je možné vytvoriť 13800 variácií tretej triedy bez opakovania prvkov?
- Karty
Predpokladajme, že v klobúku sú tri karty. Jedna z nich je červená na obidvoch stranách, jedna z nich je čierna na obidvoch stranách a tretia má jednu stranu červenú a druhú čiernu. Z klobúka náhodne vytiahneme jednu kartu, a vidíme, že jedna jej strana j
- Hokej
V hokejovom MS hrá 8 družstiev, určte koľkými spôsobmi sa môžu rozdeliť o zlatú, striebornú a bronzovú medailu.
- Kocky
Hádžeme tromi hracími kockami. Napíš všetky možnosti hodov.
- Obelix
Obelix má tri prilby, štyri meče a päť štítov. Koľko mečov musí ešte nechať ukuť u kováča Metallurgixa, aby mohol chodiť 90 dní v inej zbroji?
slovné úlohy - viacej »