Kombinácie s opakovaním n=28, k=2 výsledok
Kalkulačka vypočíta počet kombinácií k-tej triedy z n prvkov s opakovaním. Kombinácie s opakovaním sú neusporiadané k-tice zostavená z n prvkov tak, že každý je v nej najviac k-krát.Výpočet:
Ck′(n)=(kn+k−1) n=28 k=2 C2′(28)=C2(28+2−1)=C2(29)=(229)=2!(29−2)!29!=2⋅129⋅28=406
Počet kombinácií s opakovaním: 406
Trošku teórie - základy kombinatoriky
Variácie
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine (preto usporiadaná).Počet variácií vypočítame ľahko použitím kombinatorického pravidla súčinu. Ak máme napríklad množinu n=5 čísel 1,2,3,4,5 a máme urobiť variácie tretej triedy, bude ich V3(5) = 5*4*3 = 60.
Vk(n)=n(n−1)(n−2)...(n−k+1)=(n−k)!n!
n! voláme faktoriál čísla n a je to súčin prvých n prirodzených čísel. Zápis s faktoriálom je len prehľadnejší, ekvivalentný, pre výpočty je plne postačujúce používať postup vyplývajúci z kombinatorického pravidla súčinu.
Permutácie
Permutácia je synonymický názov pre variáciu n-tej triedy z n-prvkov. Je to teda každá n-prvková usporiadaná skupina vytvorená z n-prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine.P(n)=n(n−1)(n−2)...1=n!
Typický príklad je: Máme 4 knihy a koľkými spôsobmi ich môžme usporiadať vedľa seba v poličke?
Variácie s opakovaním
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorených z množiny n prvkov, pričom prvky sa môžu opakovať a záleží na ich poradí. Typickým príkladom je tvorenie čísel z číslic 2,3,4,5 a zistenie ich počtu. Ich počet podľa kombinatorického pravidla súčinu vypočítame:Vk′(n)=n⋅n⋅n⋅n...n=nk
Permutácie s opakovaním
Permutácia s opakovaním je usporiadaná k-prvková skupina z n-prvkov, pričom niektoré prvky sa opakujú v skupine. Opakovanie niektorých (alebo všetkých v skupine) znižuje počet takýchto permutácií s opakovaním.Pk1k2k3...km′(n)=k1!k2!k3!...km!n!
Typický príklad je zistiť koľko je sedemmiestnych čísel utvorených z číslic 2,2,2, 6,6,6,6.
Kombinácie
Kombinácia k-tej triedy z n prvkov je neusporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a nezáleži na poradí prvkov v skupine. Neusporiadané skupiny sa v matematike volajú množiny resp. podmnožiny. Ich počet je kombinačné číslo a vypočíta sa takto:Ck(n)=(kn)=k!(n−k)!n!
Typický príklad na kombinácie je že máme 15 žiakov a máme vybrať trojice. Koľko ich bude?
Kombinácie s opakovaním
Tu vyberáme k prvkové skupiny z n prvkov, pričom nezáleží na poradí a prvky sa môžu opakovať. k je logicky väčšie ako n (inak by sme dostali kombinácie obyčajné). Ich počet je:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Vysvetlenie vzorca - počet kombinácii s opakovaním sa rovná počtu umiestnení n−1 oddeľovačov na n-1+k miest. Typický príklad je: ideme si do obchodu kúpiť 6 čokolád. V ponuke majú len 3 druhy. Koľko máme možností? k=6, n=3..
Základy kombinatoriky v slovných úlohách
- Párty
Na párty si každý štrngol s každým. Dokopy si štrngli 300 krát. Koľko ľudí bolo na párty?
- Bity, bajty
Vypočítajte koľko rôznych čísel možno zakódovať v 16-bitovom binárnom slove?
- Sad
V sade rastie 5 radov po 5 stromov . Koľko je v sade stromov?
- Karty
Koľkými spôsobmi je možné rozdať 32 hracích kariet 6 hráčom?
- Trojice
Koľko rôznych trojíc možno vybrať zo skupiny 43 študentov?
- Cestovná kancelária
Malá cestovná kancelária ponúka 5 rôznych zájazdov na medové týždne. Aká je pravdepodobnosť, že aj nevesta aj ženích si zvolia ten istý zájazd (predpokladame, že si vyberajú nezávisle)?
- Polohy kníh
Koľko je polôh k uloženiu troch knih na poličku?
- Futbalová liga II
Vo futbalovej lige je 16 tímov. Koľko rôznych poradí moze vzniknúť na konci súťaže?
- Venček
Na venček prišlo 12 chlapcov a 15 dievčat. Koľkými spôsobmi môžeme vybrať 4 tanečné páry?
- Priadza
Pracovníčka obsluhuje 600 vretien, na ktoré sa navíja priadza. Pravdepodobnosť roztrhnutia priadze na každom z vretien za čas t je 0,005. a) Určte rozdelenie pravdepodobnosti počtu roztrhnutých vretien za čas t a strednú hodnotu a rozptyl. b) Aká je pravd
- Fourland
V krajine Fourland majú iba štyri písmena F, O, U, R a každé slovo má práve štyri písmena. V žiadnom slove sa nesmie opakovať ani jedno písmeno. Napíš všetky slová, ktoré sa dajú u nich napísať.
- Kvetinárka
Kvetinárka má 18 tulipánov a 15 frézií. Koľko rôznych kytíc môže urobiť, ak použije všetky kvety? Koľko frézií bude v jednej kytici?
- Cukríky
Vrecko cukríkov obsahuje 20 cukríkov piatich rôznych príchutí: višňová, citrónová, pomaranč, mango a kola. Vieme že vo vrecku je z každej príchute aspoň jedna a že citrónových je 2-krát viac ako višňových. Koľkými spôsobmi môžu byť rôzne príchute v sáčku
- Čísla 13
Koľko prirodzených čísel menších ako 301 možno vytvoriť z číslic 0,1,2,3,6,7?
slovné úlohy - viacej »