Vektor - příklady - strana 4 z 7
Pokyny: Vyřešte každý úkol pečlivě a ukažte své celé řešení. Pokud je to vhodné, proveďte zkoušku správnosti řešení.Počet nalezených příkladů: 121
- Vypočítejte: 8174
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Vypočítejte: 8173
Polohový vektor hmotného bodu, který se pohybuje v rovině, je možné v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (2t + 3t²; 6t + 3), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Vypočítejte: 8172
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (6t²+ 4t ; 3t + 1) kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době t = 2s
- Kapky deště
Vlak se pohybuje rychlostí 60 km/h. Dešťové kapky padající za bezvětří svisle (rovnoměrným pohybem v důsledku působení odporu vzduchu) zanechávají na oknech vlaku stopy, odkloněné od svislého směru o 30°. Jakou rychlostí padají kapky?
- Směrový vektor
A(5;-4) B(1;3) C(-2;0) D(6;2) Vypočítej směrový vektor a) a=AB b) b= BC c) c=CD
- Čtverec 28
Čtverec ABCD má střed S[−3, −2] a vrchol A[1, −3]. Určete souřadnice ostatních vrcholů čtverce.
- Skalární součin
Vypočtěte skalární součin dvou vektorů: (2,5) (-1, -4)
- Souměrnost
Najděte obraz A´ bodu A[1,2] v osové souměrnosti s osou p: x=-1+3t, y=-2+t (t = jsou realná čísla)
- Souřadnice vektoru
Určete souřadnice vektoru u = CD, pokud C (19; -7) a D (-16; -5)
- Předjíždění 3
Na přímé silnici předjíždí osobní auto pomalejší autobus tak, že začne předjíždět v odstupu 20 m od autobusu a po předjetí se před něj zařadí opět v odstupu 20 m. Osobní auto předjíždí stálou rychlostí 72 km/h, autobus jede stálou rychlostí 54 km/h. Délky
- Motorový člun
Motorový člun se pohybuje vzhledem k vodě stálou rychlostí 13 m/s. Rychlost vodního proudu v řece je 5 m/s a) Pod jakým úhlem vzhledem k vodnímu proudu musí člun plout, aby se stále pohyboval kolmo ke břehům řeky? b) Jak velkou rychlostí se přibližuje člu
- Lodník
Po palubě lodí kráčí lodník stálou rychlostí 5 km/h ve směru, který svírá se směrem rychlosti lodi úhel 60°. Loď se pohybuje vzhledem ke klidné hladině jezera stálou rychlostí 10 km/h. Určete graficky velikost rychlosti, kterou se lodník pohybuje vzhledem
- Veslice
Veslice plující po řece urazila vzdálenost 120 m při plavbě po proudu za 12 s, při plavbě proti proudu za 24 s. Určete velikost rychlosti veslice vzhledem k vodě a velikost rychlosti proudu v řece. Obě rychlosti jsou konstantní.
- Sčítaní rychlostí
V železničním voze rychlíku jedoucího stálou rychlostí 24 m/s vrhneme míček, jehož počáteční rychlost vzhledem k vozu je 7 m/s. Jak velká je počáteční rychlost míčku vzhledem k povrchu země, jestliže ho vrhneme a) ve směru jízdy b) proti směru jízdy c) ko
- Parašutista
Po otevření padáku klesá výsadkář k zemi stálou rychlostí 2 m/s, přičemž ho unáší boční vítr stálou rychlostí 1,5 m/s. Určete: a) velikost jeho výsledné rychlosti vzhledem k zemi, b) vzdálenost místa jeho dopadu od osamělého stromu, nad nímž se nacházel v
- Vypočítejte 6830
Vypočítejte výslednou rychlost obou vozidel po havárii auta o hmotnosti m1 = 1,5 t jedoucího rychlostí 100 km/ha kamionu o hmotnosti m2 = 40 tun jedoucího rychlostí 90 km/h, pokud se jedná o čelní havárii. Vypočítejte přetížení působ
- Kružnice a tečna
Najděte rovnici kružnice se středem v (1,20), která se dotýká přímky 8x + 5y-19 = 0
- Dvaja
Dvě přímé čáry kříží v pravém úhlu. Dva lidé začínají současně v místě křižovatky. John jde rychlostí 4 km/h po jedné cestě a Peter jede rychlostí 8 km/h po druhé cestě. Jak dlouho bude trvat, než budou vzdálený 20√5 km od sebe?
- Kolineární body
Ukažte, že body A (-1,3), B (3,2), C (11,0) jsou kolineární (leží na jedné přímce).
Máš úkol, nad kterým si lámeš alespoň 10 minut hlavu? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.