Kombinace s opakováním n=3, k=3 výsledek
Kalkulačka vypočítá počet kombinací k-té třídy z n prvků s opakováním. Kombinace s opakováním: k-členná kombinace s opakováním z n prvků je neuspořádaná k-tice sestavená z těchto prvků tak, že každý se v ní vyskytuje nejvýše k-krát.Výpočet:
Ck′(n)=(kn+k−1) n=3 k=3 C3′(3)=C3(3+3−1)=C3(5)=(35)=3!(5−3)!5!=2⋅15⋅4=10
Počet kombinací s opakováním: 10
Trošku teorie - základy kombinatoriky
Variace
Variace k-té třídy z n prvků je uspořádána k-prvková skupina vytvořená z množiny n prvků. Prvky se neopakují a záleží na pořadí prvků ve skupině (proto uspořádána).Počet variací vypočítáme snadno použitím kombinatorického pravidla součinu. Pokud máme například množinu n = 5 čísel 1,2,3,4,5 a máme udělat variace třetí třídy, bude jejich V3 (5) = 5 * 4 * 3 = 60.
Vk(n)=n(n−1)(n−2)...(n−k+1)=(n−k)!n!
n! voláme faktoriál čísla n a je to součin prvních n přirozených čísel. Zápis s faktoriálu je jen přehlednější, ekvivalentní, pro výpočty je plně dostačující používat postup vyplývající z kombinatorického pravidla součinu.
Permutace
Permutace je synonymický název pro variaci n-té třídy z n-prvků. Je to tedy každá n-prvková uspořádána skupina vytvořená z n-prvků. Prvky se neopakují a záleží na pořadí prvků ve skupině.P(n)=n(n−1)(n−2)...1=n!
Typický příklad je: Máme 4 knihy a kolika způsoby jejich můžeme uspořádat vedle sebe v poličce?
Variace s opakováním
Variace k-té třídy z n prvků je uspořádána k-prvková skupina vytvořených z množiny n prvků, přičemž prvky se mohou opakovat a záleží na jejich pořadí. Typickým příkladem je tvoření čísel z číslic 2,3,4,5 a zjištění jejich počtu. Jejich počet podle kombinatorického pravidla součinu vypočítáme:Vk′(n)=n⋅n⋅n⋅n...n=nk
Permutace s opakováním
Permutace s opakováním je uspořádána k-prvková skupina z n-prvků, přičemž některé prvky se opakují ve skupině. Opakování některých (nebo všech ve skupině) snižuje počet takových permutací s opakováním.Pk1k2k3...km′(n)=k1!k2!k3!...km!n!
Typický příklad je zjistit kolik je sedmimístných čísel vytvořených z číslic 2,2,2, 6,6,6,6.
Kombinace
Kombinace k-té třídy z n prvků je neuspořádaná k-prvková skupina vytvořená z množiny n prvků. Prvky se neopakují a nezáleží na pořadí prvků ve skupině. Neuspořádané skupiny se v matematice volají množiny resp. podmnožiny. Jejich počet je kombinační číslo a vypočte se takto:Ck(n)=(kn)=k!(n−k)!n!
Typický příklad na kombinace je že máme 15 žáků a máme vybrat trojice. Kolik jich bude?
Kombinace s opakováním
Zde vybíráme k prvkové skupiny z n prvků, přičemž nezáleží na pořadí a prvky se mohou opakovat. k je logicky větší než n (jinak bychom dostali kombinace obyčejné). Jejich počet je:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Vysvětlení vzorce - počet kombinaci s opakováním se rovná počtu umístění n-1 oddělovačů na n-1 + k míst. Typický příklad je: jdeme si do obchodu koupit 6 čokolád. V nabídce mají jen 3 druhy. Kolik máme možností? k = 6, n = 3 ..
Základy kombinatoriky v slovních úlohách
- Zasedací pořádek
Kolika způsoby se může posadit 6 osob na 6 židlí (např. obstarávání lístků ve vlaku)?
- Pojistka
Majitel domu je pojištěný vůči živelným pohromám a platí ročně 0,06% z hodnoty domu pojistku 119 Eur. Vypočítejte hodnotu jeho domu. Vypočítejte jaká je pravděpodobnost živelné pohromy, pokud víte že 41% z ceny pojistky jde na úhradu škod.
- Fotbalová liga
V 5. fotbalové lize je 19 mužstev. Kolika způsoby může být obsazeno první, druhé a třetí místo?
- Turnaj
Určitě kolika způsoby lze vybrat z 24 žáků 2 zástupci třídy na školní turnaj.
- Obchod
Ze statistiky prodejnosti zboží se zjistilo, že zboží A si koupí 51% lidí a zboží B si koupí 59% lidí Jaká je pravděpodobnost, že z 10 lidí si 2 koupí A a 8 značku B?
- Pravděpodobnost jevu
Pravděpodobnost že nastane jev J při 3 nezávislých pokusech je 0,6. Jaká je pravděpodobnost, že jev J nastane při jednom pokusu (pokud při každém pokusu je pravděpodobnost stejná)?
- Obdélníky
Kolik je obdélníků, jejichž délky stran jsou vyjádřeny přirozenými čísly a mají obsah 8937 cm²?
- Obdélník
V obdélníku se stranami 3 a 9 vyznačíme úhlopříčku. Jaká je pravděpodobnost, že náhodně zvolený bod uvnitř obdélníku je blíže k této úhlopříčce, jako k libovolné straně obdélníku?
- 7 statečných
9 hrdinů cválá na 9 koních za sebou. Kolika způsoby je lze seřadit za sebou?
- Tombola výhra
V tombole prodali 200 lístků, z toho 5 bylo výherních. Jaká je pravděpodobnost, že Kubo, který si koupil 1 lístek, vyhraje?
- Manželé
U stolu sedí 6 lidí, 3 na jedné a 3 na opačné straně. Mezi nimi jsou 2 manželské páry. Každý manželský pár chce sedět naproti sobě. Kolika způsoby se mohou usadit?
- Počet trojúhelníků
Je dán čtverec ABCD a na každé jeho straně 4 vnitřních bodů. Určete počet všech trojúhelníků s vrcholy v těchto bodech.
- SPZ
Kolik různých SPZ může země mít, pokud se používá 2 písmen následované 3 číslicemi?
- Kopec
Do kopce vedou 2 cesty a 1 lanovka. a) kolik je všech možností tam a zpět b) kolik je všech možností aby cesta tam a zpět nebyla stejná c) kolik je všech možností abychom šli alespoň jednou lanovkou
slovní úlohy - více »