Simplify complex expr

Perform the indicated operations and write the results in the form of a + bi:

(2 + 3i)³ (ii) (1 + i)⁴

Correct answer:

z = -184+36i

Step-by-step explanation:

z=(2 + 3i)3 (ii) (1 + i)4 z=z1 z2 z3  z1 = (2 + 3i)3 = (2 + 3i) (2 + 3i) (2 + 3i) = 46+9i z2= ii = i i = 1 z3 = (1 + i)4 = (1+i)2 (1+i)2 = 2i 2i = 4  z=z1 z2 z3 z = (46+9i)   (1) (4) z = (46+9i)   4  z=184+36i



Did you find an error or inaccuracy? Feel free to write us. Thank you!



Showing 1 comment:
Dr Math
Some semi-results:

(2+3i) * (2+3i) = 2 * 2 + 2 * 3i + 3i * 2 + 3i * 3i = 4+6i+6i+9i2 = 4+6i+6i-9 = 4- 9 +i(6 + 6) = -5+12i

(-5+12i)*(2+3i) = (-5+12i) * (2+3i) = -5 * 2 + (-5) * 3i + 12i * 2 + 12i * 3i = -10-15i+24i+36i2 = -10-15i+24i-36 = -10- 36 +i(-15 + 24) = -46+9i

(1+i) ^ 2 = (1+i) * (1+i) = 1 * 1 + 1 * i + i * 1 + i * i = 1+i+i+i2 = 1+i+i-1 = 1- 1 +i(1 + 1) = 2i





Tips for related online calculators

You need to know the following knowledge to solve this word math problem:

Units of physical quantities:

Grade of the word problem:

Related math problems and questions: