Quadrilateral

In the square ABCD point, P is in the middle of the DC side, and point Q is in the middle of side AD. If the area of quadrilateral BQPC is 76 cm2, what is the area of ABCD?

Correct answer:

S =  121.6 cm2

Step-by-step explanation:

S1=76 cm2  S = a2 a2  12 (a/2) (a/2)  12 a (a/2) = S1 a2  18 a2  12 a2 = S1  58 a2 = S1 S = a2 = 85 S1  S=85 S1=85 76=8 765=6085=121.6 cm2S_{1} = 76 \ \text{cm}^2 \ \\ \ \\ S\ = \ a^2 \ \\ a^2\ -\ \dfrac{ 1 }{ 2 } \ (a/2)\ (a/2)\ -\ \dfrac{ 1 }{ 2 } \ a\ (a/2)\ = \ S_{1} \ \\ a^2\ -\ \dfrac{ 1 }{ 8 } \ a^2\ -\ \dfrac{ 1 }{ 2 } \ a^2\ = \ S_{1} \ \\ \ \dfrac{ 5 }{ 8 } \ a^2\ = \ S_{1} \ \\ S\ = \ a^2\ = \ \dfrac{ 8 }{ 5 } \ S_{1} \ \\ \ \\ S = \dfrac{ 8 }{ 5 } \cdot \ S_{1} = \dfrac{ 8 }{ 5 } \cdot \ 76 = \dfrac{ 8 \cdot \ 76 }{ 5 } = \dfrac{ 608 }{ 5 } = 121.6 \ \text{cm}^2



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
See also our right triangle calculator.
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: