The Law of Cosines - practice problems
The law of cosines is a mathematical formula used in trigonometry that relates the sides of a triangle to the cosine of one of its angles. Specifically, it states that in any triangle with sides a, b, and c and angles A, B, and C opposite to those sides, the following equation holds:c2 = a2 + b2 - 2ab * cos(C)
where c is the length of the side opposite angle C, a is the length of the side opposite angle A, and b is the length of the side opposite angle B. The formula is also known as "cosine formula" or "cosine rule".
The law of cosines can be used to find the length of a side of a triangle when the lengths of the other two sides and the angle opposite the unknown side are known. It can also be used to find an angle of a triangle when the lengths of all three sides are known.
It is particularly useful in solving triangles that are not right triangles, where the Pythagorean theorem can not be applied.
The law of cosines can also be useful in solving problems involving distance and navigation, like finding the distance between two points on the surface of the earth, or finding the distance between two celestial bodies. It is also used in physics and engineering, such as in calculating the force required to bend a beam of a certain length and material properties.
Direction: Solve each problem carefully and show your solution in each item.
Number of problems found: 79
- Cosine - legs
Using the law of cosines, find the measurement of leg b if the givens are β=20°, a=10, and c=15.
- Rhombus 36
Rhombus ABCD with side 8 cm long has diagonal BD 11.3 cm long. Find angle DAB.
- A triangle 7
A triangle lot has the dimensions a=15m, b=10m, and c=20m. What is the measure of the angle between the sides of b and c?
- Three 235
Three houses form a triangular shape. House A is 50 feet from house C and house B is 60 feet from house C. The measure is angle ABC is 80 degrees. Draw a picture and find the distance between A and B.
- Piece of a wire
A piece of wire is bent into the shape of a triangle. Two sides have lengths of 24 inches and 21 inches. The angle between these two sides is 55°. What is the length of the third side to the nearest hundredth of an inch? A: The length of the third side is
- Triangle 90
Triangle made by 6 cm 4.5 cm and 7.5 cm. what angles does it make?
- Scalene triangle
Solve the triangle: A = 50°, b = 13, c = 6
- Laws
From which law directly follows the validity of Pythagoras' theorem in the right triangle? ...
- Greatest angle
Calculate the greatest triangle angle with sides 124, 323, 302.
- Side c
In △ABC a=1, b=6 and ∠C=110°. Calculate the length of the side c.
- Triangle ABC
Triangle ABC has side lengths m-1, m-2, and m-3. What has to be m to be a triangle a) rectangular b) acute-angled?
- Isosceles triangle and cosine
Using the cosine theorem, prove that in an isosceles triangle ABC with base AB, c=2a cos α.
- A rhombus
A rhombus has sides of the length of 10 cm, and the angle between two adjacent sides is 76 degrees. Find the length of the longer diagonal of the rhombus.
- Calculate 2
Calculate the largest angle of the triangle whose sides are 5.2cm, 3.6cm, and 2.1cm
- Big tower
From a tower 15 meters high and 30 meters away from the river, the width of the river appeared at an angle of 15°. How wide is the river in this place?
- Angles by cosine law
Calculate the size of the angles of the triangle ABC if it is given by: a = 3 cm; b = 5 cm; c = 7 cm (use the sine and cosine theorem).
- Triangle and its heights
Calculate the length of the sides of the triangle ABC if va=5 cm, vb=7 cm and side b are 5 cm shorter than side a.
- The angle of view
Determine the angle of view at which the observer sees a rod 16 m long when it is 18 m from one end and 27 m from the other.
- ABCD
AC= 40cm , angle DAB=38 , angle DCB=58 , angle DBC=90 , DB is perpendicular on AC , find BD and AD
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.