Arithmetic progression 2
The 3rd term of an Arithmetic progression is ten more than the first term, while the fifth term is 15 more than the second term. Find the sum of the 8th and 15th terms of the Arithmetic progression if the 7th term is seven times the first term.
Correct answer:
![](/img/71/seq_sum.jpg)
Tips for related online calculators
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?
You need to know the following knowledge to solve this word math problem:
Grade of the word problem:
Related math problems and questions:
- The sum 39
The sum of the first six terms of the arithmetic sequence is 72, and the second term is seven times the fifth term. Find the first term and the AP difference.
- The sum 21
The sum of a geometric progression's 2nd and 3rd terms is six times the 4th term. Find the two possible values of the common ratio B. If the second term is eight, the common ratio is positive. Find the first six terms.
- In a GP 72+144
In a GP, the sum of the 2nd and fifth terms is 72, and the sum of the 3rd and 6th terms is 144. Find the common ratio, find the first term, and find the sum of the first six terms
- The product 9
The product of the third and second terms of the arithmetic progression is 3000. If the common difference is 10, find the first term.
- The sum 27
The sum of a geometric progression's second and third terms is six times the fourth term. Find the two possible values of the common ratio.
- Arithmetic 81798
Two arithmetic sequences have the same first term. The nth term of the first sequence is 15, and of the second sequence, 21. The sum of the first n terms of the first sequence is 63, and of the second sequence, 84. Write the sums of the first n terms of b
- The common difference 2
Find the common difference of an arithmetic progression (AP), whose first term is 5 and sum of its first 4 terms is half the sum of the next four terms.