Max - cone
The workshop must produce the greatest cone from the iron bar (shape = prism) with dimensions 6.2 cm, 10 cm, and 6.2 cm.
a) Calculate cone volume.
b) Calculate the waste.
a) Calculate cone volume.
b) Calculate the waste.
Correct answer:
![](/img/60/cone_4.jpg)
Tips for related online calculators
Tip: Our volume units converter will help you convert volume units.
You need to know the following knowledge to solve this word math problem:
Units of physical quantities:
Grade of the word problem:
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Largest possible cone
It is necessary to make the largest possible cone from an iron rod in the shape of a prism with dimensions of 5.6 cm, 4.8 cm, and 7.2 cm. a) Calculate its volume. b) Calculate the waste.
- Dimensions 83226
Calculate the weight of an iron bar 1.2 m long, whose cross-section is a trapezoid with dimensions a=10 cm c=8 cm and the distance between the bases v=6 cm. As we know, 1 cubic meter of iron weighs 7800 kg.
- Cross-section of iron bar
What is the mass of an iron bar 1.5 m long, the cross-section of which is a rhombus with side a = 45 mm and a corresponding height of 40 mm? Iron density ρ = 7.8 g/cm³? What is the surface of the iron rod?
- The conical roof
The conical roof above the warehouse has a diameter of the lower part (base) d = 11.2 m and a height v = 3.3 m. How many rectangular steel plates with dimensions of 1.4 m and 0.9 m were needed to produce this roof if the seams and waste required an increa
- Rectangular 4959
In the workshop, they cut 50 circles with a diameter of 9 cm from a rectangular sheet with dimensions of 50 cm and 100 cm. What percentage of the sheet was a waste?
- Dimensions 79294
The swimming pool dimensions are as follows: l:w:h = 10:4:1. The pool can hold 625 m³ of water. Calculate how many square meters of tiles need to be purchased for lining the pool walls if we add 5% for waste.
- Triangular prism
Calculate the volume of a triangular prism 10 cm high, the base of which is an equilateral triangle with dimensions a = 5 cm and height va = 4,3 cm