Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.
The result:
4 : 3 = 4/3 = 1 1/3 ≅ 1.3333333
The result spelled out in words is four thirds (or one and one third).How do we solve fractions step by step?
- Divide: 4 / 3 = 4/1 · 1/3 = 4 · 1/1 · 3 = 4/3
The first operand is an integer. It is equivalent to a fraction 4/1. Dividing two fractions is the same as multiplying the first fraction by the reciprocal value of the second fraction. The first sub-step is to find the reciprocal (reverse the numerator and denominator, reciprocal of 3/1 is 1/3) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, four divided by three equals four thirds.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: `(){}`), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., `+` and `-`, or `*` and `/`) must be evaluated from left to right.
Fractions in word problems:
- Money - parts
What part of €24 is €12, €4, €8, €1, €18, €20?
- Tristan
Tristan normally wrestles at 80 pounds. He wants to add enough weight to move into the 84-pound division. What percent of his current body weight must he add?
- Lila knows
Lila knows that 3/16 means "3 divided by 16." She uses this to find the decimal equivalent for 3/16. Enter a digit into each box to continue her work.
- Pupils - boys and girls
5/8 of the pupils in a hall were boys. 7/10 of the boys wore glasses. 48 boys didn't wear glasses. How many pupils were there in the hall?
- Jacob 4
Jacob is dividing 5 aquariums into 1/8 of aquarium sections for his different animals. How many 1/8s are there in Jacobs 5 aquariums?
- Soup from canteen
For how many people is 90 liters of soup enough if we assume 3/8 liters of soup per person in the canteen?
- Comparing by height
Ira is 1 2/5 m tall. Her mother is 4/5 m as tall as Ira. How many times is Ira's mother taller than her?
more math problems »
Last Modified: May 10, 2025