Quadratic equation calculator

Quadratic equation has the basic form: ax2+bx+c=0
eq2
Enter the quadratic equation's coefficients a, b, and c of its basic standardized form. A solution of quadratic equations is usually two different real or complex roots or one double root — the calculation using the discriminant.


Calculation:

92=(1+a)(29a) a228a+52=0  p=1;q=28;r=52 D=q24pr=2824152=576 D>0  a1,2=q±D2p=28±5762 a1,2=28±242 a1,2=14±12 a1=26 a2=2   Factored form of the equation:  (a26)(a2)=0 9^2= (1+a)*(29-a) \ \\ a^2 -28a +52 =0 \ \\ \ \\ p=1; q=-28; r=52 \ \\ D = q^2 - 4pr = 28^2 - 4 \cdot 1 \cdot 52 = 576 \ \\ D>0 \ \\ \ \\ a_{1,2} = \dfrac{ -q \pm \sqrt{ D } }{ 2p } = \dfrac{ 28 \pm \sqrt{ 576 } }{ 2 } \ \\ a_{1,2} = \dfrac{ 28 \pm 24 }{ 2 } \ \\ a_{1,2} = 14 \pm 12 \ \\ a_{1} = 26 \ \\ a_{2} = 2 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ (a -26) (a -2) = 0 \ \\

Solution in text:

a2-28a+52=0 ... quadratic equation

Discriminant:
D = b2 - 4ac = 576
D > 0 ... The equation has two distinct real roots

a1 = 26
a2 = 2

P = {26; 2}