n choose k calculator n=240000, k=100 result

Find out how many different ways you can choose k items from n items set without repetition and without order. This number is also called combination number or n choose k or binomial coefficient or simply combinations. See also general combinatorial calculator.

(n)
(k)

Calculation:

Ck(n)=(kn)=k!(nk)!n!  n=240000 k=100  C100(240000)=(100240000)=100!(240000100)!240000!1.101×10380

The number of combinations: 1.101950E+380

110195016596474398811
131965990565731459785138956648408192523640351861375969959790
176108452306318525911307207057067675301335286001696403428740
070384656391537518093193515599228656561813431116868192807427
100271801835058292881275639096760703995156780511411680690725
142097482573513093154252499648593498195443590590930790091849
689934524443930052818469614912170761422349125004814223237600


A bit of theory - the foundation of combinatorics

Combinations

A combination of a k-th class of n elements is an unordered k-element group formed from a set of n elements. The elements are not repeated, and it does not matter the order of the group's elements. In mathematics, disordered groups are called sets and subsets. Their number is a combination number and is calculated as follows:

Ck(n)=(kn)=k!(nk)!n!

A typical example of combinations is that we have 15 students and we have to choose three. How many will there be?

Foundation of combinatorics in word problems



more math problems »