Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.
The result:
4 1/6 + 2 3/4 = 83/12 = 6 11/12 ≅ 6.9166667
The result spelled out in words is eighty-three twelfths (or six and eleven twelfths).How do we solve fractions step by step?
- Conversion a mixed number 4 1/6 to a improper fraction: 4 1/6 = 4 1/6 = 4 · 6 + 1/6 = 24 + 1/6 = 25/6
To find a new numerator:
a) Multiply the whole number 4 by the denominator 6. Whole number 4 equally 4 * 6/6 = 24/6
b) Add the answer from the previous step 24 to the numerator 1. New numerator is 24 + 1 = 25
c) Write a previous answer (new numerator 25) over the denominator 6.
Four and one sixth is twenty-five sixths. - Conversion a mixed number 2 3/4 to a improper fraction: 2 3/4 = 2 3/4 = 2 · 4 + 3/4 = 8 + 3/4 = 11/4
To find a new numerator:
a) Multiply the whole number 2 by the denominator 4. Whole number 2 equally 2 * 4/4 = 8/4
b) Add the answer from the previous step 8 to the numerator 3. New numerator is 8 + 3 = 11
c) Write a previous answer (new numerator 11) over the denominator 4.
Two and three quarters is eleven quarters. - Add: 25/6 + 11/4 = 25 · 2/6 · 2 + 11 · 3/4 · 3 = 50/12 + 33/12 = 50 + 33/12 = 83/12
It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(6, 4) = 12. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 6 × 4 = 24. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, twenty-five sixths plus eleven quarters equals eighty-three twelfths.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: `(){}`), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., `+` and `-`, or `*` and `/`) must be evaluated from left to right.
Fractions in word problems:
- Anesa
Anesa ate 3/4 of her pizza, and Eman ate 1/4 of her pizza. Who ate the greater part of the pizza?
- Pizza 16
Kevin ate 5/12 of his pizza. Which is a better estimate for the amount of pizza that he ate: A. about half of the pizza or B. almost all of the pizza?
- One quarter
Which of the following has a sum of 3/4? A. 1/2+1/4 B. 1/2+1/3 C. 1/4+1/8 D. 1/9+1/12
- Carlo 2
Carlo had 5/6 of pizza, and Dannah had 1 5/8 of a similar pizza. How much more pizza did Dannah have than Carlo?
- Once simplified
Once simplified, which of the expressions below has a value between 20 and 30? Select all that apply. A) 32÷8×514 B) -18÷6×9 C) 4×12÷2 D) 12×413÷(-2)
- Conner
Conner picked 8 1/5 pounds of apples. Louisa picked 9 2/3 pounds of apples. How many apples, more pounds, did Louisa pick than Conner?
- Steve 3
Steve is making breakfast. The recipes call for 7/8 cup of milk for grits and 3/4 cup for biscuits. He only has 2 cups of milk. Does he have enough to make his breakfast?
more math problems »
Last Modified: April 16, 2025