Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.
The result:
1 3/4 + 1 3/4/1000 = 7007/4000 = 1 3007/4000 = 1.75175
The result spelled out in words is seven thousand seven over four thousand (or one and three thousand seven over four thousand).How do we solve fractions step by step?
- Conversion a mixed number 1 3/4 to a improper fraction: 1 3/4 = 1 3/4 = 1 · 4 + 3/4 = 4 + 3/4 = 7/4
To find a new numerator:
a) Multiply the whole number 1 by the denominator 4. Whole number 1 equally 1 * 4/4 = 4/4
b) Add the answer from the previous step 4 to the numerator 3. New numerator is 4 + 3 = 7
c) Write a previous answer (new numerator 7) over the denominator 4.
One and three quarters is seven quarters. - Divide: 7/4 : 1000 = 7/4 · 1/1000 = 7 · 1/4 · 1000 = 7/4000
The second operand is an integer. It is equivalent to the fraction 1000/1. Dividing two fractions is the same as multiplying the first fraction by the reciprocal value of the second fraction. The first sub-step is to find the reciprocal (reverse the numerator and denominator, reciprocal of 1000/1 is 1/1000) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, seven quarters divided by one thousand equals seven over four thousand. - Add: 7/4 + the result of step No. 2 = 7/4 + 7/4000 = 7 · 1000/4 · 1000 + 7/4000 = 7000/4000 + 7/4000 = 7000 + 7/4000 = 7007/4000
It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(4, 4000) = 4000. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 4 × 4000 = 16000. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, seven quarters plus seven over four thousand equals seven thousand seven over four thousand.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: `(){}`), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., `+` and `-`, or `*` and `/`) must be evaluated from left to right.
Fractions in word problems:
- Anesa
Anesa ate 3/4 of her pizza, and Eman ate 1/4 of her pizza. Who ate the greater part of the pizza?
- Pizza 16
Kevin ate 5/12 of his pizza. Which is a better estimate for the amount of pizza that he ate: A. about half of the pizza or B. almost all of the pizza?
- One quarter
Which of the following has a sum of 3/4? A. 1/2+1/4 B. 1/2+1/3 C. 1/4+1/8 D. 1/9+1/12
- Carlo 2
Carlo had 5/6 of pizza, and Dannah had 1 5/8 of a similar pizza. How much more pizza did Dannah have than Carlo?
- Once simplified
Once simplified, which of the expressions below has a value between 20 and 30? Select all that apply. A) 32÷8×514 B) -18÷6×9 C) 4×12÷2 D) 12×413÷(-2)
- Conner
Conner picked 8 1/5 pounds of apples. Louisa picked 9 2/3 pounds of apples. How many apples, more pounds, did Louisa pick than Conner?
- Steve 3
Steve is making breakfast. The recipes call for 7/8 cup of milk for grits and 3/4 cup for biscuits. He only has 2 cups of milk. Does he have enough to make his breakfast?
more math problems »
Last Modified: April 16, 2025