Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.
The result:
1 1/2 + 2 1/3 = 23/6 = 3 5/6 ≅ 3.8333333
The result spelled out in words is twenty-three sixths (or three and five sixths).How do we solve fractions step by step?
- Conversion a mixed number 1 1/2 to a improper fraction: 1 1/2 = 1 1/2 = 1 · 2 + 1/2 = 2 + 1/2 = 3/2
To find a new numerator:
a) Multiply the whole number 1 by the denominator 2. Whole number 1 equally 1 * 2/2 = 2/2
b) Add the answer from the previous step 2 to the numerator 1. New numerator is 2 + 1 = 3
c) Write a previous answer (new numerator 3) over the denominator 2.
One and a half is three halves. - Conversion a mixed number 2 1/3 to a improper fraction: 2 1/3 = 2 1/3 = 2 · 3 + 1/3 = 6 + 1/3 = 7/3
To find a new numerator:
a) Multiply the whole number 2 by the denominator 3. Whole number 2 equally 2 * 3/3 = 6/3
b) Add the answer from the previous step 6 to the numerator 1. New numerator is 6 + 1 = 7
c) Write a previous answer (new numerator 7) over the denominator 3.
Two and one third is seven thirds. - Add: 3/2 + 7/3 = 3 · 3/2 · 3 + 7 · 2/3 · 2 = 9/6 + 14/6 = 9 + 14/6 = 23/6
It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(2, 3) = 6. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 2 × 3 = 6. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, three halves plus seven thirds equals twenty-three sixths.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: `(){}`), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., `+` and `-`, or `*` and `/`) must be evaluated from left to right.
Fractions in word problems:
- The fuel
The car's fuel was ¾ full at the beginning of the week. At the end of the week, there was ⅛ of a tank left. a. Did the car use more or less than ½ of a fuel tank? How do you know? b. How much more or less than ½ of a tank did it use? Show your work using
- Dividends
The three friends divided the win by the invested money. Karlos got three-eighths, John 320 permille, and the rest got Martin. Who got the most, and which got the least?
- Compare fractions
Find which is the larger of the two fractions: 11/32, 7/24 by expressing the numbers as: a) fractions with the same denominator; b) decimals.
- Compare three fractions
Which of the three rational numbers is the largest? 1/7, 6/17, 4/17
- What 11781
What is greater: 2/5 of 10, or 20% of 4000?
- Three-quarters 11361
Which is more than two-thirds of the 99 or three-quarters of the 80?
- Aquarium 7098
The zoo has an aquarium with a length of 2.5 m, a width of 1.5 m, and a depth of 2 m. The water reaches 3/4 of the height of the aquarium. Can we put a 2 m³ stone in the aquarium without the water spilling out of the aquarium? (1=Yes, 0=No)
more math problems »
Last Modified: April 16, 2025