Fraction calculator
This calculator adds two fractions. First, all fractions are converted to a common denominator when they have different denominators. To do this, find the Least Common Denominator (LCD) or multiply all denominators to determine a common denominator. Once all denominators are the same, add the numerators and place the result over the common denominator. Finally, simplify the result to its lowest terms or convert it to a mixed number.
The result:
1/3 + 3/5 = 14/15 ≅ 0.9333333
The spelled result in words is fourteen fifteenths.How do we solve fractions step by step?
- Add: 1/3 + 3/5 = 1 · 5/3 · 5 + 3 · 3/5 · 3 = 5/15 + 9/15 = 5 + 9/15 = 14/15
It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 5) = 15. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 5 = 15. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words - one third plus three fifths is fourteen fifteenths.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.
Fractions in word problems:
- In one day
In one day, a baker used 2/3 of a pound of flour, 3/4 of a pound of flour, and 5/12 of a pound of flour. How much flour was used that day?
- There 22
There is 5/8 of a pizza in one box and 9/12 of a pizza in another box. How much do you have altogether?
- Evaluate 40
Evaluate a+bc-d if a=78, b=-716, c=0.8, and d=14 . Write your answer as a fraction in simplest form.
- Benson
Benson spends ⅓ of his pocket money on transport and ⅔ on food I. What fraction of his pocket money did he spend on transport and food? ii. What fraction is left?
- One quarter
Which of the following has a sum of 3/4? A. 1/2+1/4 B. 1/2+1/3 C. 1/4+1/8 D. 1/9+1/12
- Frank
Frank will be riding his bike to school this year. The distance from his house to the end of the street is ⅜ mile. The distance from the end of the street to the school is ⅚ mile. How far is Frank's house from school?
- There 29
There are 30 animals on the farm. 1/6 are horses, 2/5 are cows, and the rest are pigs. How many horses, cows, and pigs are there?
more math problems »
Last Modified: February 14, 2025