Fraction calculator
This calculator adds two fractions. First, all fractions are converted to a common denominator when they have different denominators. To do this, find the Least Common Denominator (LCD) or multiply all denominators to determine a common denominator. Once all denominators are the same, add the numerators and place the result over the common denominator. Finally, simplify the result to its lowest terms or convert it to a mixed number.
The result:
1/3 + 2/9 = 5/9 ≅ 0.5555556
The spelled result in words is five ninths.How do we solve fractions step by step?
- Add: 1/3 + 2/9 = 1 · 3/3 · 3 + 2/9 = 3/9 + 2/9 = 3 + 2/9 = 5/9
It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(3, 9) = 9. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 3 × 9 = 27. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words - one third plus two ninths is five ninths.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order of operations are:
PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
BODMAS - Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.
GEMDAS - Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.
MDAS - Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.
Be careful; always do multiplication and division before addition and subtraction. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.
Fractions in word problems:
- Breakfast 83989
Peter ate a quarter of the pizza for breakfast and a sixth of the rest for lunch. How much of the pizza did he have left for dinner?
- Solve 27
Solve fraction problem: 9/27 + 3/54
- A cake 2
Karen sliced a cake into 10 slices. She ate 2/10 of it and after some time she ate another 4/10 of it. How much of the cake did Karen eat?
- Evaluate 39
Evaluate the expression shown below and write your answer as a fraction in simplest form. (5)/(12) + (1)/(9) start fraction, 5, divided by, 12, end fraction, plus, one nine.
- HW store
At the hardware store, 1/4 of the nails are size 2d, and 1/6 of the nails are size 4d. What fraction of the nails are either size 2d or 4d?
- Work out 2
Work out the sum of 2/6 and 1/6. Give your answer in its simplest form.
- Katelyn
Katelyn ate ⅓ of an apple pie, and Chad ate ⅜ of the same pie. What fraction of the pie was eaten?
more math problems »
Last Modified: February 14, 2025